CD++

Usear’s Guide

Daniel A. Rodriguez
Gabriel A. Wainer

Departamento de Computacion
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires

Argentina

1999

CD++ User's Guide

Contents
1 INVOKING tO the SIMUIBLONccviieieie ettt sttt re e e tesneenenrs 8
A =g o = o g T Y/ T L= S 8
S 1 U = 0] 1= = RS RR 10
2 Definition Of the MOGEIS........coiiiiiie et 11
2Nt R 0 1W o = 1Y, o o L= S 11
P2 A N o 0o 1Y/ oo =1 12
2.3 CEllUIA MOUEIS ..ottt bbbttt b e bbb e e e e e nneas 13
3 Incorporating New AtOMIC MOUEIS.........cceiiiiiee ettt 17
3.1 Example. Construction Of @ QUEUE............ceeiriiiirreieieeeeeese st 18
4 Rules SPeCifiCation LANQUEBOEceriiieiereiiesie et e see st eee e eseeseeeeeseesseeeesneeneessesneeneesees 20
4.1 LaNQUAGE' S GIAIMIMENeciveeiieeiereteeiteesseesseesseessesssseaseasseessesssesssesssssnsesssesssesssessnsesnsesssesssesssenss 20
4.2 Precedence Order and AssoCiatiVity Of OPEIralOrsS........ccceieieerrreerereseee e see e eee e see e 22
4.3 Functions and Constants used by the [anguageccooeriiiinesece e 23
4.3.1 USeOf BOOIEAN VEIUES ..ottt sttt st 23
4.3.1.1 Boolean Constant of the Trivalent LOGICcecvierieiiieee s 23
4.3.1.2 BOO0IEAN OPEIBIONS. ... c.veveeeueeueeieeseeiessesse st s s s et srease s s s e e e e e esessesnesresr e s e e eneenes 23
4.3.1.2.1 OPErator ANDcoiiiiiiiesieeiieiee e e e e s esree e e teesreesseesseesseesnteenre e reenreenreeas 23
VA I WA @ o < = (0] S o USSR 23
VG T IR T @ o - (] 1 [1 SRR 24
T W N @ o - (0 (@ | SR 24
4.3.1.2.5 OPEIAOr IMP ...ttt sttt sre e sae e snte s ee e pe e reenree s 24
4.3.1.2.6 OPErator EQVocuiieiiesieieieieeees ettt steste e ssessentenaenteneeneeneens 24
4.3.2 Functions and Operations on Real NUMDEN'Scooiiiiiiiiiieceeee e 25
4.3.2.1 R AioNal OPEIELOrS.......ccoueiieeieiieiieesiesteeieesteseestesteeaestesteessesseeseessesseesessesseessesreesessens 25
VA Nt I o = (o) PSS 25
4.3.2. 1.2 OPEIELON 1= ... e e e r s 25
VA I IR T @ o1 - (o] PSS 25
VA I I @ o = (o SRS 25
4.3.2.1.5 OPEIaLON <7....iiieeeeesreeeesresieere e se s r s e e s resae e s e sne e e e sr e e e e arenr e e n e ne e re e nenns 26
4.3.2.1.6 OPEIELON >7.....oiiueeieesieeeesre e se s e e r e sae s sme e e sr e e e r e sr e n e n e e re e nenns 26
4.3.2.2 ArithmELiC OPEIalOrS......ccoueiieeieiteceese sttt te e aeste e stesre e e te s e eaesbesaaestesreensesrens 26
4.3.2.3 Functions 0N Real NUMDENS ..ottt 27
4.3.2.3.1 Functions to Verify Properties of Real NUMDEXS...........cccooveiiiiinininencceeee 27
FUNCEION EVEN......oitiiiiieiiee st sttt sttt 27
FUNCEION OO ...ttt bbbt 27
0T o T = o | USRS 27
FUNCE ON ESPITME. ...ttt e e ee e e seeseeeneenneas 27
FUNCEION ISUNAEFINED ...ttt e 27
4.3.2.3.2 MathematiCal FUNCLIONS..........ooiiiiiiiere e 28
4.3.2.3.2.1TrigoNOMELNIC FUNCLIONS.oiiiieeieiee ettt eeas 28
FUNCEION T8N ...ttt b bbbt n e 28
FUNCEION SIM L.ttt b bbbt 28
FFUNCLION COS....outeiie ettt e e st e e e e e se e teeneeneeseeeneeneesreensenneas 28
FUNCEION SEC......eciiitiitiitestes ettt sttt ettt bt e e e eneas 28
FUNCEION COLAN ...ttt ettt sttt 28
FUNCLION COSEC ...ttt ettt sttt et ae e e e teene e e e saeeneeseesreensenneas 28

2/67

CD++

User's Guide

[T g lei (Lo 1K= v o [29

[T Tt 1o = 1 T 29

[U0 To 1) 1K= 0L YO 29
[T g lei 10 K=< < o 29
[T gl 1o g = w0 = o N 29

[U oo 1) I | O 29

[U g o 1) = o O 29

[T gl o T =0 o 29

[U g To T o) 1= o: o 1RO 30

[U aTo 1T g [= =, o 30

[T glei Lo g IE= v o W 30
[T (g tei Lo TRz | o T 30

[U aTo 1T 1K= w0 o 30
[T g lei (Lo Iz < < o 30
[T g lei 1o g IR= w01 <o o [30
FUNCEION GCOTANN.......co ittt s e sab e e ebeeeeneeas 30
(0T 1o o 1 T SRRSO 31
4.3.2.3.2.2Functions to cal culate Roots, Powers and Logarithms...........cccccveveevnvnceenennee. 31
FUNCLION SOM ...ttt st s e e e e te s ne e e e sreenaestesreeneenneas 31
L0 o 1= o SRR 31

[T i (oo 1 1 o 31
FUNCEION [0 .ttt 31
(0T Ko T [[TSRS 32
FUNCLION POWES ...ttt sttt st st te b e e tesnaeaesreensestesreeneennens 32

[T i o 1 oo 32
4.3.2.3.2.3Functions to calculate GCD, LCM and the Rest of the Numeric Division....... 32
[0 g Tox 1) 1 T O 32

[T gl 1o 1O I 2 32
FUNCLION FEMAINGES ...ttt s s e e s e e e s s sbae e s s sabse e e s s bbeeesssanne s 32
4.3.2.3.3 Functions to Convert Real Valuesto Integers Values........cccvveeeveveceeceseesnee 33
[0 i o] 1 o0 [(o 33

[T Tt 0 (0 o 33
FUNCLION ITUNCUPPE <.ttt sttt ea e te e e saesreensenne s 33
FUNCLION FraCioNaleeeieee ettt s s eebe e e enee s 33
4.3.2.3.4 Functions to manipulate the Sign of numerical values.............ccccviineneicnieieenne 34
[U aTo T 1K= o LT 34
FUNCHION SION 1.ttt st a e te s ne e e e sreenaestesreennenne s 34
FUNCLION FANAOMSIGN. ...t 34
4.3.2.3.5 Functions to manipulate Prime NUMDENS ..o 34
[00T T A IS e (1 =T 34
FUNCLION NEXIPIIMIE.....c ittt st e e e s e e e s s s bae e s s sabs e e e s s baneessnsanne s 34
FUNCEION NEN_PIIME ..t nne s 34
4.3.2.3.6 Functions to calculate Minimum and MaxXimuUMSccoveveieeeeieeecciee e 35
[U oo 1T) 1 01 T 35
[T gl 1o g 0T 35
4.3.2.3.7 ConditioNal FUNCLIONS........cccueiiiiiiee it s st eite e s s e e s st e e s s eba e e s s sbre e s s enrees 35
[0 Yo (10 1 O 35

[T i o] 1 1 35
4.3.2.3.8 ProbabiliStiC FUNCLIONSueiiiieiee ettt sttt e s s ear e s s rae e s s 36

CD++ User's Guide
FUNCLION FaNAOMSIGN. ...ttt 36

LU 0Tt 10 I = o (o o 36

(0T o I SRS 36

LU 0ot 10 o o= r= 36
FUNCLION EXPONENTIAL ...t 36
FUNCLION ottt s re et e s reeaaestesreennenne s 36
FUNCLION QBIMIMAL......c.eiieecece ettt e s e s reeaaesresreensenne s 36
FUNCLION NOIMEL........oiiie ettt et e s s e e e e nre e e e sre e sreeeneeenneenns 36
FUNCEION UNITOMM ..ttt eesne s 37
FUNCLION DINOMIEALoeeece e st 37
FUNCEION POISSON. ...ttt n e b b nn e n e nen e e eneas 37

LU0t 0] a1 = o | 1 g 37
4.3.2.3.9 Functions to calculate Factorials and Combinatories..........c.ccovvveeveveceese s, 37
LU 0Tt 0 0 = o R 37
L0010 1o ¢ o T 37
4.3.2.4 Functionsfor the Cellsand his Neighborhood............cccccceevviiiieniiiicce e 38
FUNCLION SLAEECOUNL ..ottt ettt st sneenesre e e e saesreennenneas 38
FUNCLON TTUECOUNLooeeeeciee ettt et te et e e s e e e e re e e e s re e sreeeneeenneenns 38
FUNCLION FAISECOUNL ..ot nesne s 38
FUNCLION UNAEFCOUNL ..ottt s re e sne s 38
FUNCLON CEIIPOS ...ttt ettt e re e s re e ene e e nne e 38
4.3.2.5 Functionsto Get the SIMUIation TIMEcccccieiee e e re e e e nree s 39
FUNCEION TIME... ittt st e e te s re e e e sre e e e stesreensennens 39

4.3.2.6 Functionsto Convert Vaues between different units...........cccocoevviieceienevc e 39
4.3.2.6.1 Functions to Convert Degreesto Radians...........cccovvereneieeieieeienesesesesreee e 39
FUNCLION FAOTODE.......eceeecie ettt sttt ne et e s re e e stesreennenne s 39
FUNCLION AEOTORAAccueeiiiciecie ettt a e re e e stesreennesne s 39
4.3.2.6.2 Functions to Convert Rectangular to Polar Coordinatesccccoovvvrenenvcieenenne 39
FUNCLION FECETOPOIAI Tottt e e e eesne e 39
FUNCtion rectTOPOIar_angle.........c.ooeeiuiiieie ettt 39
FUNCLION POIAITORECL X ...ttt 39
FUNCLION POIAITORECE_Y ...ttt 39
4.3.2.6.3 Functions to Covert Temperatures between different units..........cccccoeeveeevvieennee. 40
FUNCLION CLOFottt re et s ne e e e sreensestesreennenneas 40

LU0 o 1 o | 40
FUNCLION KEOC ... ettt st e e e s te e e e stesreennanne s 40
FUNCLION KEOF ...t sttt e e et e aaestesreennenne s 40

LU0 o] 1 o (oL 40

LU 0ot o] 1 o (o] - 40
4.3.2.7 Functionsto manipulate the Vaues on the Input and Output Ports............cccceeeeeceennene 40
FUNCLION POMYV BIUB........eeeee ettt eneenne s 40

LU 0ot 0] TS oo 41

4.3.3 Predefined CONSLANES........cci ittt s e et st aestesna e resreennenne s 42
(@001 = | B SRS 42
LO00] 11 7= | = S 42
LO0] 115 7= B N S 42
COoNStant ElECIION_MASS.....ccuiiuieeeitiiieie et e ettt e e e b e sreenaesbesneennenris 43
CONSLANE PrOLON_MBSS.......eereeeeeesreriee et ee e st sn e s re e sresre e e sne e e resneennenres 43
CONSLANt NEULTON_IMESS......ceiieiieeieesteesiee ettt et e sbe et e saeesee b e e b e e sbeesbeesbeesaeesareeaneenne 43

CD++ User's Guide

(@001 = 0| B O ! =T 43

CoNStANt RYADEIG ... s 43

L0001 =0 |10 - LY 43

Constant DONr_radiUS.........couiiieeeee e e 43

Constant DONr_MAagNELON...........coiiiiee s 43

CoNSLANt BOITZIMAINN. ...ttt 43

(@00 = | A= ol PSSR 43

CONSLANT HONT.....ceeeee et n e 43

Constant EleCtroN_CarQgE..........ccueiiiiiece e 43

CONSLANE PlANCK ...ttt 43

CONSLANT AVOGAANO ...ttt nr e n e e e ens 43

CONSLANT BIMU ...ttt ettt ae e ab e et e e b e e be e be e sbeesaeeeaneeaneeaee 44

L0001 =0 | 0= 0 PR 44

(0001 =g 0 T[0T 44

(0001 = L =0 = Y 44

Constant Stefan_DOItZMaNNc.ooeeii e 44

(00101 =g 100 o[[= o 44

CONStaNt BUIET _QAIMIMAL......couiieieeerieeieriesieee st eeeseeseeeee e e e seeseeeeeseesseeneesneeneessesneeneesees 44

4.4 Techniquesto Avoid the Rewriting Of RUIEScccocuveeeii e 44
AA1 ClaUSEEISE ...ttt bbb e 44
442 Preprocessor — USING MACTOS........coiuiiiiienieeieeiesie et seee et eestesee e eneeseesneeneeseeeneennens 45

5 Filefor the Definition of the Initial Values of the Model............ccoovieiiiinie e 47
6 Fileof Map Of INItial VBIUEScceeie ettt sttt sreeaesre s 48
7 Filefor the definition of EXternal EVENLS..........ccocviiiiiiiiienes et 49
8 Format of the Events generated @S OULPUL...........oorieeeeereeierieseeeeesie e see e e eeeesee e e e e neesees 49
9 FOrMaL Of thE LOG FilE....cciiieieeieeie ettt re e s te e stesreennesre s 50
10 Output generated by the Parser Debug MOGE..........ccoooiieeiiii e 50
11 Output of the Debug Mode for the Evaluation of RUIES............ccooiiieieiiierr e 51
12 Viewing the RESUITS — DIaWLOQccuerverreieeeieienie sttt 53
121 Representing bidimensional cellular models With DrawLog.......cccccveeeviiieienesiese e 55
12.2 Representing three-dimensional cellular models with DrawlL og.........ccccoveevviencennieeennne 55
12.3 Representing cellular models with 4 or more dimensions..........ccccevveeereneerenese e 56
13 Random Initial States— MaKeRANcoeiiiriiiiirere s 57
14 Converting VAL filesto Map of Values— TOMaP.......ccceviiiiiereiiee et 58
15 Converting .VAL filesto use With CD++ — TOCDPPcccooiiiiiiieeeeeere e 59
16 APPENTIX A — EXBIMPIES. ..ottt st et te s te et e s beereensesneeneere e 60
16.1 GAME OF LITO...uiiiiiiiiiiiiiiesiese ettt ettt bbb bt e e nneas 60
16.2 Simulation of the Rebound Of an ODJECEcceciiiiiiiire e 61
16.3 Classification Of SUDSIBNCES........ccviiereeeeere et saesreeneenne s 62
16.4 GAME O LITE = 3D ..uiiiiiiiiiieieieeeerese sttt ettt st sttt nneas 64
T B L = o) 1V o 01U 65
17 Appendix B — The Preprocessor and the Temporary FileS........ccoooviieieieicenn e 67

5/67

CD++ User's Guide

Index of Figures

Figure 1 —Help showed by the SIMUIALOTccceiiiiieececese et 8
Figure 2 — Example for the definition of aDEV'S coupled model ..o 12
Figure 3 — Setting values to aDEV S atomiC MOGE!ccviirieiieieeiniseseseseee s 12
Figure 4 — Example of setting parametersto DEV S atlomic ModelS........cccovveeeeveveeciesc e 13
Figure 5 — Structure of @QUEUIE...........cceeiiicieeee ettt s e e st e s te e e te s reeaesbesreensesneeneere e 18
Figure 6 —Method to initialize the QUEUE.............ooiiie e e 18
Figure 7 — Method for the External Transition Function of the QUEUE............ccceevvveeceve e, 19
Figure 8 — Methods for the Output Function and the Internal Transition of the Queue......................... 19
Figure 9 — Grammar used for the definition of theruleson CD++ ..o 22
Figure 10 — Precedence Order and Associativity used in N—CD++cccooiiiiiieirieeere e 23
Figure 11 — Behavior of the boolean operator ANDc.cccoieeiiiieeese et 23
Figure 12 - Behavior of the boolean Operator ORccooiieerinieeene e 23
Figure 13 — Behavior of the boolean operator NOT ... 24
Figure 14 — Behavior of the boolean operator XORc.coiiieieii et 24
Figure 15 — Behavior of the boolean operator IMP............coo oo 24
Figure 16 — Behavior of the boolean operator EQVooviieiiii e 24
Figure 17 — Behavior of the Relational Operator =..........ccocvieeieiiceese et 25
Figure 18 — Behavior of the Relational Operator I=.........coov et 25
Figure 19 — Behavior of the Relational Operator >..........ccooiiieirieeeresee e e 25
Figure 20 — Behavior of the Relational Operator <..........ccoovoeereneeeenese e 26
Figure 21 — Behavior of the Relational Operator <=.........ccccvceeviiieieese e 26
Figure 22 — Behavior of the Relational Operator >=.........ccccooeiiiieieneseees e 26
Figure 23 — ArithmEtiC OPEIAOrS.......couviiiieirieieeeeeeeee et r e nn e 26
Figure 24 — Example of use of the function portValueccceiieeve e 41
Figure 25 — Example of use of the function portVaue with thisPort ... 41
Figure 26 — Example of use of the ClaUSe EISe.........coo e 45
Figure 27 — Example of a circular reference produced by abad use of the clause Else......................... 45
Figure 28 — Example of a circular reference detected by the Smulatorccccevvveeceiicecce v, 45
Figure 29 — Format used t0 defiNE aMECTO........coiieie e 46
Figure 30 — Example of USING COMMENLSccueieiriiirieriesie et 47
Figure 31 — Format of the file used to define theinitial values of acellular moddlcccceevvneeee. 47
Figure 32 — Example of afilefor the definition of theinitial valuesfor a Cellular Moddl 48
Figure 33 — Format of the file of Map of valuesfor aCellular Modelccooeiiiiiininincccee 48
Figure 34 — Example of afilefor the definition of the External Events...........c.cccoovveevevececcece e, 49
Figure 35 — Example of an OULPUL fIl€........c.oceiiiiiiee et 49
Figure 36 — Fragment Of @LOg File........c.oiiiiiieee s 50
Figure 37 — Output generated in the Parser Debug Mode for the Game of Life.........ccccoovvvnircicieene. 51
Figure 38 — Fragment of the output generated by the debug mode for the Evaluation or Rules............ 53
Figure 39 — Help SNOWN DY DIAWLOQcoviieieieieieieeiesi st 53
Figure 40 — Examples for the invocation t0 DFrawWLogccoeeeriieeeneiierese et 54
Figure 41 — Fragment of the output generated for abidimensional cellular model.............ccccevuveeeee. 55
Figure 42 — Fragment of the output generated for athree—dimensional cellular model.......................... 56
Figure 43 — Fragment of the output generated for amodel with dimension 4cccocvvveveicieene. 57
Figure 44 — Help shown by MakeRaNdc.ccviieiiiice et st 57
Figure 45 — Help SNOWN BY TOMAPc.eeiiiiiciee ettt sttt st s a e eneane e 59
Figure 46 — Help SNOWN DY TOCDPPoiiieese ettt ene e e 59

6/67

CD++ User's Guide

Figure 47 — Implementation of the Game Of Life..........oooerrieiii e 61
Figure 48 — Implementation of the Rebound Of an ODJECEcccoiriiirireeee e 62
Figure 49 — Coupling structure for the Classification of SUBStaNCEScccccvveevvveececcceee e, 63
Figure 50 — Implementation of the Model to Classify SUDSIaNCES..........ccceoerercerr i 64
Figure 51 — Implementation of the Game of Life— 3D ... 65
Figure 52 — Initial values for the cells of the Game of Life—3D......cccccvvveveveieeve e 65
Figure 53 — Implementation of the Game of Life with 4 dimensions and using macros..............c......... 66
Figure 54 — Filelife.val that containstheinitial valuesfor the Game of Lifein4D............ccccovvveennee 66
Figure 55 — File life.inc that contains some macros used in the Game of Life 4Dcccceevvveeennee. 67
Figure 56 — File life-1.inc that contains the remaining macro for the Game of Life 4D 67

7167

CD++

User's Guide

1 Invoking

CD++

User’s Guide

to the Simulator

It exists two forms to invoke to the simulator:

Sandalone Mode.

Smulation Server (using network connection).

1.1 Standalone Mode

To configure the execution of the simulator, the following parameters are valid:

—h: shows this help:

simu [-ehl
e:

BRI IEEeESTes T

nmot dpvbf r sqwj

events file (default: none)

show this help

message log file (default: /dev/null)

nodel file (default : nodel . m)

out put (default: /dev/null)

stop tinme (default: Infinity)

set tol erance used to conpare real nunbers

print extra info when the parsing occurs (only for cells nodels)
eval uat e debug node (only for cells nodels)

bypass the preprocessor (nmacros are ignored)

flat debug node (only for flat cells nodels)

debug cell rules node (only for cells nodels)

show the virtual tine when the sinulation ends (on stderr)

use quantumto cal cul ate cells val ues

sets the width and precision (with form xx-yy) to show nunmbers

Figure 1 —Help showed by the simulator

—e: External events filename. If this parameter is omitted, the simulator will not use external

events

The format used to describe the external eventsis showed in the section 6.

—1: Log filename. This file is used to store the messages received and emitted by each model
within the simulation. If this parameter is omitted, the simulator will not generate activity log.
If you wish to get the log on standard output, you should write).
The format used by the log is described in the section 9.

8/67

CD++ User's Guide

—m: Model description filename. This parameter indicates the name of the file that contains the
description of all models to simulate. If this parameter is omitted, the simulator will try to
load the models from the model.ma file.

—0: output filename. This parameter indicates the name of the file that will be used to store the
output generated by the simulator. If this parameter is omitted, the simulator will not generate
any output. If you wish to get the results on standard output, simply write —o.

The format of this output is showed in the section 8.

—t: Sets the maximum time to simulate. If this parameter is omitted, the simulator will stop only
when it will not have more events (internal or external). The format used to set the time is
HH:MM:SS:MS, where:

HH: hours

MM: minutes (0 to 59)

SS seconds (0 to 59)

MS: thousandth of second (O to 999)

—d: Defines the tolerance used to compare real numbers. The value passed with the —d parameter
will be used as the new tolerance value.
By defaullt, the value used is 10°%.

—p: Shows additional information on parsing the cell model’s rules. The parameter must be
accompanied with the filename that will be used to store the detail. This mode is useful when
asyntax error occurs on complex rules.

The format used to store the output is showed in the section 10.

-v: Enable the debug mode on the evaluation of al cell model’s rules. For each rule to be
evaluated it will be showed the results of the evaluation of each function and operator that
they composeit. In addition, this mode evaluates the rulesin complete form, that is, it doesn’t
use the rule's optimization. The parameter must be accompanied with the filename that will
be used to store the rule’ s evaluation.

The format of the output generated when this mode is enabled is showed in the section 11.

—b: Bypass the preprocessor. When this parameter is set, the macros will be ignored.

—f: Enable the debug mode on flat cell models. This allows to show the state of a flat-coupled
model on each time change. When you used flat models, the simulation process does not send
messages between the atomic cells that compound it, and then, the log will not store these
messages. When you run the DrawLog, it will be unable to show the state of the model at
each time.

The parameter must be accompanied with the filename that will be used to store the states. If
you wish to show the results on the standard output, simply write —f.

9/67

CD++

User's Guide

—r: Enable the debug mode that validates the rules used to define the behaviour of the cells

models. When this mode is enabled, the simulator checks for the existence of multiple valid
rules at runtime. If this condition is true, the simulation will be aborted. This mode is
available only in standalone mode.

There are special cases to consider: if you are using a stochastic model (i.e. the model uses
random numbers generators) must happen that multiple rules will be valid, or than none of
them will be. In both cases, the simulator will notify this situation to the user, showing a
warning message on standard output, but the simulation will not be aborted. For the former
case, the first valid rule will be considered. For the second case, the cell will have an
undefined value (?), and the delay time will be the default delay time specified for the model.
If this parameter is not used when the simulator is invoked, the mode is disabled and only
will be considered the first valid rule.

—s: Show the simulation’ s end time on stdErr.

—g: Allows to use a quantum value. This permit to quantify the value returned by the local

computing function evaluated on each cell of the model. Thus, al the values will be rounded
to the near maximum multiple of the quantum value minor than the original value. This
mechanism decreases the number of messages transmitted in the simulation, but the results of
the smulation will not be exact.

For example, if the quantum value is 0.01 and the value returned by the local computing
function is 0.2371, the state of the cell will be 0.23.

The value used as quantum must be declared next to the parameter—q, for example: to set the
guantum value as 0.01 the parameter must be —q0.001.

If the quantum value is O or the parameter —q is not used, the use of the quantum will be
disabled, and the value returned by the local computing function will be directly the vaue of
the cell.

—w: Allows to set the wide and precision of the real values displayed on the outputs (log file,

external eventsfile, evaluation resultsfile, etc).

By default, the wide is 12 characters and the precision is of five digits. Thus, of the 12
characters of wide, 5 will be for the precision, 1 for the decimal point, and the rest will be
used for the integer part that will include a character for the sign if the value is negative.

To set new values for the wide and precision, the —w parameter must be used, followed of the
number of characters for the wide, a hyphen, and the number of characters for the decimal
part. For example to use a wide of 10 characters and 3 for the decimal digits, you must write
-w10-3.

Any numerical value that must be showed by the simulator will be formatted using these
values, and it will be rounded if necessary. Thus, if a cell has the value 7.0007 and the
parameter -w10-3 is declared on the invocation of the simulator, the value showed for the
cell on al outputs will be 7.001, but the internal value stored will not be affected.

1.2 Simulation Server

The invocation of the simulation without parameters indicates that it must run in simulation

server mode. In this implementation, the communication with the server will use the TCP/IP services
and will be only available under any version of Unix. The simulator will wait on a port for the
specification, it will smulateit, and it will return the results through the same port.

10/ 67

CD++ User's Guide

The specification is composed by three parts separated by aline with a point at the first position.
The order for the specification is:

Description of the model.
List of external events.

Maximum simulation time.

2 Definition of the Models

The file that allows to define the model is composed by groups of definitions for the coupled
models and, optionally, configuration of atomic models. Each definition indicates the name of the
model (between []) and its attributes. The group [top] is obligatory and defines the coupled model at
thetop level.

In the section 16, there are some examples that show how the models are defined.

2.1 Coupled Models

For this models exists four properties to configure: components (using the clause “ components’),
output ports (clause “out”), input ports (clause “in”) and links between models (clause “link”). The
syntax is:

Components. Describe the models that compound the coupled model. If this clause is not
specified, an error will occur. The syntax is:

model_name@class_nombre

The order in which the models are specified establish the priority used to send the
messages. This represents the select function of the formalism.

The model’s name is necessary because is possible to construct a coupled model with
more than one instance of the same atomic model. For example, a coupled model that has
two queues called queuel and queue2.

The class' name can reference to either atomic or coupled models. These last ones should
be defined in the same configuration file as a new group.

Out: Enumerate the name of the output ports. This clause is optional because a model cannot
have ports of this kind.
Example: Out portl port2 port3

In: Enumerate the name of the input ports. This clause is optional because a model cannot
have ports of this kind.
Example: In portl port2 port3

Link: Describe the internal and external coupled schema. The syntax is:

11/67

CD++ User's Guide

source_portf@model] destination_port][@model]

The name of the model is optional since if it is not indicated the coupled model being
defined will be used.

Example:

[top]

conponents : transducer @ransducer gener ator @ener at or Consuner
Qut : out

Link : out @enerator arrived@ransducer

Li nk : out @enerat or i n@onsuner

Li nk : out @onsumer sol ved@ r ansducer

Li nk : out @ransducer out

[Consuner]

conponents : queue@ueue processor @r ocessor
in: in

out : out

Link : in i n@ueue

Li nk : out @ueue i n@r ocessor
Li nk : out @rocessor done@ueue
Li nk : out @rocessor out

Figure 2 —Examplefor the definition of a DEV'S coupled model

2.2 Atomic Models

If the configuration for the atomic models is not specified, the default values assumed by the
class' s developer will be used (see section 13).
The configuration is specified as showed in the next figure:

[nane_of _t he_at omi c_nodel]
var_nanel : val uel

var _nanmen : val uen

Figure 3 — Setting valuesto a DEV S atomic model

The name of the variables is defined by the class's developer and must be documented together
with the source code.
Each instance of an atomic model can be configured independently of another instances of the same
kind.

In the next example two instances of the class Processor (derived from Atomic) with different
configuration is showed:

[top]

12/ 67

CD++ User's Guide

conponents : Queue@ueue Processor1@rocessor Processor2@rocessor

[processor]
distribution : exponenti al

[processor 2]
distribution : poisson

[queue]
preparation : 0:0:0:0

4 — Example of setting parametersto DEV S atomic models

Cellular Models

is used with the aggregate of certain inherent parameter characteristics of them. These parameters are:
Type: CELL |]

Indicate if the cellular model is flat or not. If it is not specified, it will be assumed that
CELL).

It allows to define the quantity of columns for unidimensional and bidimensional
cellular models.

Width clause necessarily implies the use of the clause to
complete the definition of the dimension.
Width is used, the invocation of the clause in the same model's

definition it will produce an error.

It allows to define the quantity of rows only for bidimensional cellular models.
If you wish to define an unidimensional cellular model, you must assign the value 1 to

Height clause.
Height clause necessarily implies the use of the clause to
complete the definition of the dimension.
Height is used, the invocation of the clause in the same mode's

definition it will produce an error.

13/ 67

CD++

User's Guide

Dim : (Xo, X1, «--y Xp)

It allows to define the dimension of any cellular model.

All the x; values must be integers.

If the clause Dim is used, the invocation of the clauses Width or Height in the same
model's definition it will produce an error.

The tupla that defines the dimension of the cellular model must have two or more
elements. Thisimply that if you wish to create an unidimensional cellular model, you
must define adimension (Xo, 1).

All the referencesto cells will have the format:
(Yo» Y1s +er Vi) where: 0£y; <X; "i=0,.,n
with y; an integer value

Select : cellName (Xy1, X2.1,.--%n1)-. CElINamMe (Xym, Yomye--sKnm)

Out :

Link :

Border :

With: 0£x;<dimy U O£ xy; <Width
0£%; <dim U O£x,; <Height "

o
i

33 3

wam; " k=3, ..,n

It represents the function select described in the formalism, which indicates the cells
that have priority on the rest. The not specified cells possess the priority dictated by the
order of pairs according to their position.

The same as in the coupled models. This clause can be not defined, since a cell cannot
have input ports connected with external models.

The same as in the coupled models. This clause can be not defined, since a cell cannot
have output ports connected with external models.

The same as in the coupled models but to make reference to a cell it should be used the
name of the coupled model together with (x1,X»,...,X,) Without leaving spaces.
Examples: Link outputPort inputPort@celIName (X1,Xa,...,Xp)

Link outputPort@cellName (X1,Xa,...,X,) inputPort

[WRAPPED | NOWRAPPED]
It indicates if the model is toroida or not. By default, it takes the value
NOWRAPPED.

If a non-toroidal border is used, a reference to a cell outside the cellular space will
return the undefined value (?).

14/ 67

CD++ User's Guide

Delay: TRASPORT |]

It specifies the delay type used in every cdl of the model. By default, the value

DefaultDelayTime integer

Defines the delay used by default for the external events (measured in milliseconds).

cellName (X ,X ,..Xn1 Xtm Xem nm)
Xii X n.i)
CD++ does not impose restrictions on the neighborhood's creation, allowing that the
It is possible to use more than a sentence neighbors
cellular model.
Initialvalue: Real|]
It represents the initia value for the cell’s space. The symbol represents the
undefined value.
row; 1...vaue

WithO £ i < (where Height
with Dim Height).

bidimensiona cellular model. The value defined in the position j
establish theinitial state of the cell (i j) of the cellular model.

the set {?
If this clause is used for the description of a model with more than 2 dimensions, an
error will occur.

16.1.
row; 1... vaue
WithO £ i < (where Height
with Dim Height).

bidimensional cellular model. The value defined in the position j
establish theinitial state of the cell (i j) of the cellular model.

15 67

CD++

User's Guide

The values are indicated separated by a blank space. Contrary to I nitialRowValue, by
means of this clauseit is possible to use any value belonging to the set A E {?}.

If this clause is used for the description of a model with more than 2 dimensions, an
error will occur.

InitialCellsValue : fileName

It specifies the name of the file that contains the initial values for the cells of a cellular
model. The format of thisfile is defined in the section 5.

InitialCellsValue can be used with any type of cellular models, even with
bidimensional models. On the other hand InitialRowValue and InitialRow will not be
able to be used when the dimension of the model is greater than 2. If the dimension is
2, anyone of them can be used, and even a combination of them, but in this case the
read values of the file specified in Initial CellsValue will replace to the values of the
same cells defined by Initial RowValue or Initial Row.

InitialMapValue : fileName

It specifies the name of the file that it contains a map of values that will be used as
initial state for acellular model. The format of thisfileis defined in the section 6.

LocalTransition : transitionFunctionName

It indicates the name of the group that contains the rules that define the local
computing function for all the cells.

PortInTransition : portName@ cellName (Xy, Xa,...,X,) transitionFunctionName

It allows to define an aternative behavior when an external message arrives to the
specified input port of the cell (xy, Xo,...,X,) Of the cellular model.

If this clause is not used for a cell that has an input port, when arriving an external
message through this port, the value of this message will be assigned to the cell using
the delay specified by defect in the definition of the model.

In the section 16.3 the use of this clause is exemplified.

Zone: transitionFunctionName { rangey[..range,] }

It allows to define an alternative behavior for the group of cells understood inside the
specified range. Each range is defined as (Xy,X»,....Xn) describing a unique cell,
(X1,X2,+..Xn)--(Y1,Y2,Yn) describing an area of cells, or a list that can combine both of
them (separating to each element with a blank space).

For example: zone: pothole { (10,10).. (13, 13) (1,3) }

16/ 67

CD++ User's Guide

In the moment to calculate the new state for acell, if the cell isinside of any zone, the
defined function it will be used for such, e€lse the function defined with
Local Transition will be used.

In the section 16.2 is showed an exampl e that use zones.

3 Incorporating New Atomic Models

This section describes the mechanism to define and to incorporate new atomic models to the
tool. However, these models won't be able to be used to create a cellular coupled model, but it can be
used to interact directly with other models or to be part of a DEV'S coupled model. This chapter this
guided to users with knowledge of programming in C++ language and their content cannot be useful
for those people that it only interests to use the tool with the purpose of creating cellular coupled
models and/or use models already defined within CD++.

To generate a new atomic model, it should be design a new class that is derived of the class

Atomic and it should be added the new type of aomic model to the method
MainS mulator.registerNewAtomics(). Then it should be overloaded the following methods:

initFunction: this method is invoked by the simulator at the beginning the smulation. The
objective is to alow the initidization that the model considers necessary. Before invoking to the
method, the value of sigma isinfinite and the state is passive.

externalFunction: this method is invoked when an external event arrives from a port of the model.

internalFunction: before invoking to this method, the value of sigma is zero, since the interval has
been completed for the internal transition.

outputFunction: before invoking to the method the value of sigma is zero, since the interval has
been completed for the internal transition.

className: returns the name of the class.

These methods can invoke certain predefined primitives alow to interactuar with the abstract
simulator:

holdI n(state, time): indicates to the simulator that the model should stay in the same state during a
time, and after that it will generate an internal transition.

passivate():indicates to the simulator that the model enters in passive mode and that it will only be
reactivated when an external event arrives.

sendOutput(time, port, value): sends an output message through the port.
nextChange(): this method allows to obtain the remaining time for its next state change (sigma).

lastChange(): this method allows to obtain the time in that the last state change took place.

17/67

CD++ User's Guide

state(): this method obtain the actual phase of the model.

getParameter (modelName, parameterName): this method allows to access to the parameters that
configure the class.

Toinitialize and use an atomic model see the section 2.2.

3.1 Example. Construction of a Queue

A queue is a device of temporary storage that uses a FIFO (First In First Out) mechanism. To
implement it in CD++ as a new class it should be created (that will call Queue) that extends to the
class Atomic.

ouT IN
<+— ——
QUEUE
—
DONE STOP-SEND

Figure5— Structure of a Queue

A gueue should have an input port that allows to the rest of the models insert elements to be
stored by the queue, and an output port to returns the stored values. The time of delay between the
arrival of the element and their exit it is configurable by the user. To fulfil these requirements the
queue defines two ports, a port Done that it indicates the reception of the element sent by the output
port and a port regulator of flow called stop-send.

The Queue model overloads the initialization methods, internal function, external transition and
output function. In the initialization, the variables of the model take the initial value and all the values
of the queue are eliminated.

Model &Queue: :init Function()

{
t hi s->el enents. erase(el enents. begin(), elements.end());
return *this;

}

Figure 6 —Method toinitialize the Queue

When an external event comes from an input port, the value is inserted in the internal queue and
then it is verified if the state of the queue allows to be programmed to carry out a new shipment for the
output port. If the message arrived for the port Done the last sent element can be eliminated of the
internal queue and it prepares the next (if it exists). If the message comes from the port Stop the content
it should be analyzed to interpret the order as “to stop” or “to continue” the expedition of data. If it
stops, then registers the remaining time to conclude the iteration to be considered when renewing the
tasks.

18/67

CD++ User's Guide

Model &Queue: : ext er nal Functi on(const External Message &rsg)

if(meg.port() ==in) {
el ement s. push_back(nsg. val ue());
if(elenents.size() == 1)

thi s->hol dln(active, preparationTine);

}
if(msg.port() == done)
{

el ement s. pop_front();

if('elenments.enpty())
thi s->hol dl n(active, preparationTine);

}
if(nmeg.port() == stop)
if(this->state() == active & nsg.val ue())
{
tineLeft = msg.tine() - this->|astChange();
t hi s->passi vate();
}
el se

if(this->state() == passive & !nsg.value())
thi s->hol dln(active, tinmeLeft);

return *this;

Figure 7 —Method for the External Transition Function of the Queue

The output function indicates that the time of preparation for the first element of the queue has
concluded and this is sent by the port Out. Then the internal transition function is executed indicating
that it has finished sending the value, therefore the model changes its phase to passive. The cycle will
continue with the next external message.

Model &Queue: : out put Functi on(const | nternal Message &nsg)

t hi s->sendQut put (msg.time(), out, elenents.front());
return *this;

}

Model &Queue: :internal Functi on(const I|nternal Message &)

t hi s->passi vate();
return *this;

Figure 8 —Methods for the Output Function and the Internal Transition of the Queue

19/67

CD++ User’'s Guide

4 Rules Specification Language

The definition of the rules that describe a certain behavior is made in independent form to the
cellular models that use it. This allows that more than a cellular model uses the same specification and
that several areasinside a cellular space use it without necessity of redefining it.

The language is defined as a new group inside the specification, where each component of the
group isarule with the following syntax:

rule: result delay { condition }

Each rule is composed of three elements: a condition, a delay and a result. To calculate the new
value for the cell’ s state, the simulator takes each rule (in the order in that they were defined) and if the
condition of it is evaluated to true, then its result and its delay are evaluated, and these values will be
assigned to the cell. If the evaluation of the condition of the rule is false, then it takes the following
rule. If al the rules are evaluated without having found some valid one, then the simulation will be
aborted. If it exists more than avalid rule, it takes thefirst of them.

If when evaluating the delay it is obtained the undefined value, then the simulation will be
automatically cancelled.

4.1 Language’s Grammar

The syntax of the language used by CD++ for the specification of the behavior of the atomic
cellular models can be defined with the BNF shown in the Figure 4, where the words written with
lowercase and in boldface represents terminals symbols, while those written in uppercase represent non
terminals symbols.

RULELI ST = RULE

| RULE RULELI ST
RULE = RESULT RESULT { BOOLEXP }
RESULT = CONSTANT

| { REALEXP }
BOOLEXP = BOOL

| (BOCLEXP)

| REALRELEXP

| not BOCLEXP

| BOOLEXP OP_BOOL BOOLEXP
OP_BOOL =and | or | xor | inp | eqv
REAL REL EXP = REALEXP OP_REL REALEXP

| COND_REAL_FUNC(REALEXP)
REALEXP = | DREF

| (REALEXP)

| REALEXP OPER REALEXP
| DREF = CELLREF

| CONSTANT

20/ 67

CD++ User’'s Guide

| FUNCTI ON
| port Val ue(PORTNANME)
| send(PORTNAME, REALEXP)
| cel | Pos(REALEXP)

CONSTANT = | NT
| REAL
| CONSTFUNC
|

FUNCTI ON = UNARY_FUNC(REALEXP)
| W THOUT_PARAM FUNC
| Bl NARY_FUNC(REALEXP, REALEXP)
| if(BOOLEXP, REALEXP, REALEXP)
| ifu(BOOLEXP, REALEXP, REALEXP, REALEXP)

CELLREF = (INT, | NT REST_TUPLA

REST_TUPLA =, | NT REST_TUPLA

)

BOOL =t | f | 2

OP_REL =!l=1 =1 > 1 < | >= <=

OPER =+ |1 - |1 * | [

I NT =[SIGN] DGT {D G T}

REAL =INT | [SIGN] {DGT}.DGT {D G T}

SI GN =+ | -

DAT =0] 1] 2] 3| 4| 5] 6] 7] 8] 9

PORTNANME = thisPort | STRING

STRI NG = LETTER {LETTER}

LETTER =al| b c]...]l z| Al B|] C|...| Z

CONSTFUNC =pi | e| inf | grav | accel | light | planck | avogadro
faraday | rydberg | eul er_gamma | bohr_radius | boltzmann |
bohr _nagneton | golden | catalan | amu | el ectron_charge
i deal _gas | stefan_boltzmann | proton_nass | el ectron_mass |
neutron_mass | pem

W THOUT_PARAM FUNC = truecount | fal secount | undefcount | tine | random

r andonsi gn

UNARY_FUNC = abs | acos | acosh | asin | asinh | atan | atanh | cos |
sec | sech | exp | cosh | fact | fractional | In | |og
round | cotan | cosec | cosech | sign | sin | sinh |
statecount | sqgrt | tan | tanh | trunc | truncUpper
poi sson | exponential | randint | chi | asec | acotan |
asech | acosech | nextPrine | radToDeg | degToRad
nth _prime | acotanh | CtoF | CtoK | KtoC | KtoF | FtoC |
Ft oK

Bl NARY_FUNC =conb | logn | max | min | power | remainder | root | beta

21/ 67

CD++ User's Guide

gamma | lecm| gecd | normal | f | uniform| binomal |
rect ToPol ar_r | rectToPol ar_angle | pol arToRect_x | hip |
pol ar ToRect _y

COND REAL_FUNC = even | odd | islnt | isPrinme | isUndefined

Figure 9 — Grammar used for the definition of therules on CD++

In the definition of arule, the second value, that correspond to the delay of the cell, can be aredl
number, either in direct form or as aresult of the evaluation of an expression. However, if it is not an
integer number, it will be automatically truncated. On the other hand, if their value is undefined (?)
then an error will occur, aborting the simulation.

4.2 Precedence Order and Associativity of Operators

The precedence order indicates which operation will be solved first. For example if we have:
C+B*A

where * and + are the habitual operations on real numbers; and A, B and C are real numbers. In this
case, as* has high precedence that + then B * A will be first solved; therefore, it will be equivalent to
solveC+ (B* A).

The associativity indicates which function will be solved before two operations of same
precedence. For example: the left associativity of the operators AND and OR indicate that if one
interpretsthe line:

CandBor D

as AND and OR have the same precedence, it is appealed to the associativity to choose some of them.
Asthey are associative to left, it is chosen to solve the AND first.

The operations that don't have associativity is because they cannot be combined in simultaneous
form without using another operator of different precedence. For example, two real numbers don't have
associativity, since it cannot be in the form REAL REAL, but rather it should have an operation that
links them, as an arithmetic operator.

The table of precedence and associativities used for the language interpretation are shown in the
following figure:

22/ 67

CD++ User's Guide

Order Code Associativity
Lower AND OR XOR IMP EQV Left
Precendence NOT Right
= I= > < >= <=
+ - Left
* Left
FUNCTION
Higher REAL INT BOOL COUNT ? STRING CONSTFUNC
Precedence ()

Figure 10 — Precedence Order and Associativity used in N-CD++

4.3 Functions and Constants used by the language

4.3.1 Use of Boolean Values

This section describes the constants that represent the boolean values of the trivalent logic used
by CD++ and show the operators applicable on it.

4.3.1.1 Boolean Constant of the Trivalent Logic

The trivalent logic use the values T or 1 to represent to the value TRUE, F or O to represent the
FALSE, and ? to represent to the UNDEFINED; this last one allows to represent a state whose value
cannot be determined.

4.3.1.2 Boolean Operators

4.3.1.2.1 Operator AND

The behavior of the operator AND is defined with the following table of truth:

AND [T[F][?
T |[T|F[?
F |F|F[F
2 |2|F|?

Figure 11 — Behavior of the boolean operator AND
4.3.1.2.2 Operator OR

The behavior of the operator OR is defined with the following table of truth:

OR [T[F[~?
T |[T[T[T
F |[T[F|?
? T ? ?

Figure 12 - Behavior of the boolean operator OR

23/ 67

CD++ User's Guide

4.3.1.2.3 Operator NOT

The behavior of the operator NOT is defined with the following table of truth:

NOT
T [F
F [T
? ?

Figure 13 — Behavior of the boolean operator NOT
4.3.1.2.4 Operator XOR

The behavior of the operator XOR is defined with the following table of truth:

XOR

NI

~|T|H[m

RV RNV BN V)

T
F
?

Figure 14 — Behavior of the boolean operator XOR

4.3.1.2.5 Operator IMP

IMP represents the logic implication, and its behavior is defined with the following table of

truth:
IMP | T|F | ?
T T|IF|?
F TI|ITI|T
? T|?2|7?

Figure 15— Behavior of the boolean operator IMP

4.3.1.2.6 Operator EQV

EQV represents the equivalence between trivalent logic values, and its behavior is defined with
the following table of truth:

EQV
T
F
?

Tm|{|-

T|d|m|m
—=H|m|m|-

Figure 16 — Behavior of the boolean operator EQV

24/ 67

CD++ User's Guide

4.3.2 Functions and Operations on Real Numbers

4.3.2.1 Relational Operators

The relational operators work on real numbers' and returns a boolean value pertaining to the
previously defined trivalent logic. The language used by N-CD++ has the operators ==, !=, >, <, >=,
<= whose behavior is described next.

Considering the definitions of the behavior of these operators, we can see that doesn't exists a
total order on the elements which conform the real numbers, because in al the cases, the value ? isn't
comparable with any traditional real number.

4.3.2.1.1 Operator =

The operator = is used to test if two real numbers are equal. Its behavior is defined as follow:

= ? Real Number
? T ?
Real Number ? = of real number

Figure 17 —Behavior of the Relational Operator =

4.3.2.1.2 Operator !=

The operator != is used to test if two rea numbers are not equal. Its behavior is defined as
follow:

1= ? Real Number
? F ?
Real Number ? 1 of real number

Figure 18 — Behavior of the Relational Operator !=

4.3.2.1.3 Operator >

The operator > is used to test if a real number is greater to another. Its behavior is defined as
follow:

> ? Real Number
? F ?
Real Number ? > of real number

Figure 19 — Behavior of the Relational Operator >

4.3.2.1.4 Operator <

The operator < isused to test if areal number islessto another. Its behavior is defined as follow:

! From here, when referring to the term “Real Number” it will be considering to a value pertaining to the set R E

{?}

25/ 67

CD++ User's Guide

< ? Real Number
? F ?
Real Number ? < of real number

Figure 20— Behavior of the Relational Operator <

4.3.2.1.5 Operator <=

The operator <= isused to test if areal number isless or equal to another. Its behavior is defined
asfollow:

<= ? Real Number
? T ?
Real Number ? £ of real number

Figure 21 — Behavior of the Relational Operator <=

4.3.2.1.6 Operator >=

The operator >= is used to test if a real number is greater or equal to another. Its behavior is
defined asfollow:

>= ? Real Number
? T ?
Real Number ? 3 of real number

Figure 22 —Behavior of the Relational Operator >=

4.3.2.2 Arithmetic Operators

The language has operators to carry out the most usual operations on real numbers. If any of the
operands has the undefined value, then the result of this operation will be undefined. Thisis also valid
when any kind of function is used, and some of its parameters are undefined.

The operators used are:

opl +op2 returnsthe sum of the operators.

opl—op2 returnsthe difference between the operators.
opl/op2 returnsthe value of the opl divided by op2.
opl* op2 returnsthe product of the operators.

Figure 23 — Arithmetic Operators
If adivision by zero takes place, the undefined value will be returned.

26/ 67

CD++

User's Guide

4.3.2.3 Functions on Real Numbers

4.3.2.3.1 Functions to Verify Properties of Real Numbers

In this section the functions detailed allows to check if areal number has certain properties, as
being an integer number, the undefined value, an even or odd number, or a prime number.

Function Even

Signature:
Description:

Examples:

Function Odd

Signature:
Description:

Examples:

Function isint

Signature:
Description:

Examples:

Function isPrime

Signature:
Description:
Examples:

Function isUndefined
Signature:
Description:
Examples:

even : Real ® Bool

Returns True if the value is integer and even. If the value is undefined returns
Undefined. In another case returns False.

even(?) =F

even(3.14) = F

even(3) =F

even(2) =T

odd : Real ® Bool
Returns True if the value is integer and odd. If the value is undefined returns
Undefined. In another case returns False.

odd(?) = F
odd(3.14) = F
odd(3) =T
0dd(2) = F

isint : Real ® Bool
Returns True if the value is integer and not undefined. In another case returns
False.

isint(?) = F
isint(3.14) = F
isint(3) = T

isPrime: Real ® Bool

Returns True if the value is a prime number. In another case returns False.
isPrime(?) = F

isPrime(3.14) = F

isPrime(6) = F

isPrime(5) =T

isUndefined : Real ® Bool

Returns True if the value is undefined, € se returns False.
isUndefined(?) =T

isUndefined(4) = F

27167

CD++ User's Guide

4.3.2.3.2 Mathematical Functions

This section describes different kinds of functions used commonly in trigonometry, as well as
for the calculation of roots, powers and logarithms. In addition, functions to obtain the rest and the
modul e of the division of integer numbers are included.

432321 Trigonometric Functions

Function tan
Signature: tan : Real a® Real
Description: Returns the tangent of a measured in radians.
For the values near to p/2 radians, returns the constant INF.
If aisundefined then return undefined.

Examples: tan(Pl / 2) = INF
tan(?) =7
tan(P1)=0
Function sin
Signature: sin: Real a® Real
Description: Returns the sine of a measured in radians.

If a has the value ? then returns 2.

Function cos

Signature: cos: Real a® Real
Description: Returns the cosine of a measured in radians.
If a has the value? the returns?.
Function sec
Signature: sec: Real a® Real
Description: Returns the secant of a measured in radians.

If a has the value? then returns?.

If the angleis of the form p/2 + x.p, with x an integer number, then returns the
constant INF.

Function cotan
Signature: cotan : Real a® Real
Description: Calculates the cotangent of a.
If a has the value? Then returns ?.

If aiszero or multiple of p, then returns INF.

Function cosec
Signature: cosec : Real a® Real
Description: Calculates the cosecant of a.
If a hasthe value ?, then returns?.

If aiszero or multiple of p, then returns INF.

28/ 67

CD++

User's Guide

Function atan
Signature:

Description:

Function asin
Signature:

Description:

Function acos
Signature:

Description:

Function asec
Signature:

Description:

Function acotan
Signature:

Description:

Function sinh
Signature:

Description:

Function cosh
Signature:

Description:

Function tanh
Signature:

Description:

atan : Real a® Real

Returns the arc tangent of a measured in radians, which is defined as the value
b such tan(b) = a.

If a has the value? Then returns?.

asin : Real a® Real

Returns the arc sine of a measured in radians, which is defined as the value b
such sin(b) = a.

If ahasthevaue? orif al [-1, 1], then returns 2.

acos: Real a® Real

Returns the arc cosine of a measured in radians, which is defined asthe value b
such cos(b) = a.

If ahasthevaue? or if al [-1, 1], then returns 2.

asec: Real a® Real

Returns the arc secant of a measured in radians, which is defined as the value b
such sec(b) = a.

If aisundefined (?) or if |a| <1, then returns?.

acotan : Real a® Real

Returns the arc cotangent of a measured in radians, which is defined as the
value b such cotan(b) = a.

If aisundefined (?), then returns?.

sinh: Real a® Real
Returns the hyperbolic sine of a measured in radians.
If a has the value ?, then returns ?.

cosh : Real a® Real

Returns the hyperbolic cosine of a measured in radians, which is defined as
cosh(x) = (e*+e™) /2.

If a has the value ?, then returns 2.

tanh : Real a® Real

Returns the hyperbolic tangent of a measured in radians, which is defined as
sinh(a) / cosh(a).

If a has the value?, then returns 2.

29/ 67

CD++ User's Guide
Function sech

Signature: sech : Real a® Real

Description: Returns the hyperbolic secant of a measured in radians, which is defined as

Function cosech
Signature:

Description:

Function atanh
Signature:

Description:

Function asinh
Signature:

Description:

Function acosh
Signature:

Description:

Function asech
Signature:

Description:

Function acosech
Signature:

Description:

Function acotanh
Signature:

Description:

1/ cosh(a)
If a has the value ?, then returns 2.

cosech : Real a® Real
Returns the hyperbolic cosecant of a measured in radians.
If a hasthe value ?, then returns ?.

atanh : Real a® Real

Returns the hyperbolic arc tangent of a measured in radians, which is defined
asthe value b such tanh(b) = a.

If a has the value 2, or if its absolute value is greater than 1 (i.e, al [-1, 1]),
then returns 2.

asinh : Real a® Real

Returns the hyperbolic arc sine of a measured in radians, which is defined as
the value b such sinh(b) = a.

If a hasthe value ?, then returns ?.

acosh : Real a® Real

Returns the hyperbolic arc cosine of a measured in radians, which is defined as
the value b such cosh(b) = a.

If a hasthe value ? or islessthan 1, then returns ?.

asech : Real a® Real

Returns the hyperbolic arc secant of a measured in radians, which is defined as
the value b such sech(b) = a.

If aisundefined, then return 2. If it is zero, then returns the constant INF.

acosech : Real a® Real

Returns the hyperbolic arc cosec of a measured in radians, which is defined as
the value b such cosech(b) = a.

If aisundefined, then returns ?. If it is zero, then returns the constant INF.

acotanh : Real a® Real

Returns the hyperbolic arc cotangent of a measured in radians, which is
defined as the value b such cotanh(b) = a.

If aisundefined, then returns 2. If is 1 then returns the constant INF.

30/ 67

CD++ User's Guide
Function hip
Signature: hip : Real c1 x Real c2® Real
Description: Calculates the hypotenuse of the triangle composed by the side ¢1 and c2.
If c1 or c2 are undefined or negatives, then returns ?.
432322 Functions to calculate Roots, Powers and Logarithms.,

Function sgrt
Signature:

Description:

Examples:

Note:

Function exp
Signature:

Description:

Examples:

Function In
Signature:

Description:

Examples:

Note:

Function log
Signature:

Description:

Examples:

sgrt : Real a® Real
Returns the square root of a.
If aisundefined or negative, then returns ?.
sort(4) =2

sort(2) = 1.41421

sort(0) =0

sort(-2) = ?

sart(?) =2

sgrt(x) is equivalent to root(x, 2)

n

exp : Real x® Real

Returns the value of €".

If X isundefined, then return 2.
exp(?) =7

exp(—2) = 0.135335

exp(l) =2.71828

exp(0) =1

In: Real a® Real

Returns the natural logarithm of a.

If aisundefined or isless or equal than zero, then returns 2.
In(-2) =7

In(0) =7

In(1) =0

In(?) =7

In(x) isequivalent tologn(x, €) " x

log: Real a® Real

Returns the logarithm in base 10 of a.

If aisundefined or less or equal to zero, then returns 2.
log(3) =0.477121

log(-2) =7

log(?) =7

log(0) =7

log(x) isequivalent to logn(x, 10) " x

31/67

CD++ User's Guide

Function logn

Signature: logn : Real ax Real Nn® Real
Description: Returns the logarithm in base n of the value a.

If a or n are undefined, negatives or zero, then returns ?.
Notes: logn(x, €) is equivaent to In(x) "X

logn(x, 10) is equivalent to log(x) "X

Function power
Signature: power : Real ax Real b® Real
Description: Returns a”.
If a or b are undefined or b is not an integer, then returns ?.

Function root
Signature: root : Real ax Real n® Real
Description: Returns the n—root of a.
If a or n are undefined, then returns ?. Also, returns this value if a is negative

or niszero.
Examples: root(27,3) =3
root(8, 2) =3
root(4, 2) =2
root(2, ?) =7
root(3,0.5) =9
root(-2,2) =?
root(0, 4) =0
root(1, 3) =1
root(4, 3) = 1.5874
Note: root(x, 2) is equivaent to sqrt(x) "X

43.2.3.2.3 Functions to calculate GCD, LCM and the Rest of the Numeric Division

Function LCM
Signature: lcm: Real ax Real b® Real
Description: Returns the Less Common Multiplier between a and b.
If a or b are undefined or non—integers, then returns ?.
The value returned is always integer.
Function GCD
Signature: gcd : Real ax Real b® Real
Description: Calculates the Greater Common Divisor betweeen a and b.

If a or b are undefined or non—integers, then returns ?.
The value returned is always integer.

Function remainder
Signature: remainder : Real ax Real b® Real
Description: Cdculates the rest of the division between a and b. The returned valueis:
a—n* b, wherenisthe quotient a/b rounded as an integer.
If aor b are undefined, then returns ?.

32/67

User's Guide

remainder(12, 3) =0

remainder(14, 3) =2

remainder(4,2) =0

remainder(0,y) =0 "yl ?
remainder(x, 0) = x X
remainder(1.25, 0.3) = 0.05
remainder(1.25, 0.25) =0

remainder(?, 3) =?

remainder(5, ?) = ?

4.3.2.3.3 Functions to Convert Real Values to Integers Values

In this section, functions to convert real values to integers using the rounding and truncation
techniques are detailed. In addition, it's showed functions to obtain the fractional part of area value.

Function round

Signature:
Description:

Examples:

Function trunc

Signature:
Description:

Examples:

Function truncUpper

Signature:
Description:

Examples:

Function fractional

Signature:
Description:

Examples:

round : Real a® Real

Rounds the value a to the nearest integer.
If aisundefined ?, then returns 2.
round(4) =4

round(?) = ?

round(4.1) =4

round(4.7) =5

round(-3.6) =4

trunc: Real X® Real

Returns the greater integer number less or equal than x.
If x isundefined, then returns ?.

trunc(4) =4

trunc(?) =?

trunc(4.1) =4

trunc(4.7) =4

truncUpper: Real x® Real

Returns the smallest integer number greater or equal than x.
If xisundefined, then returns 2.

truncUpper(4) = 4

truncUpper(?) = ?

truncUpper(4.1) =5

truncUpper(4.7) =5

fractional : Real a® Real

Returns the fractional part of a, including the sign.
If aisundefined then returns 2.

fractional(4.15) = 0.15

33/67

CD++ User's Guide

fractional(?) = ?
fractional (-3.6) = -0.6

4.3.2.3.4 Functions to manipulate the Sign of numerical values

Function abs
Signature: abs: Real a® Real
Description: Returns the absolute value of a.
If aisundefined then returns 2.

Examples: abs(4.15) = 4.15
abs(?) = ?
abs(-3.6) = 3.6
abs(0) =0

Function sign
Signature: sign : Real a® Real
Description: Returns the sign of a in the following form:
If a> 0thenreturns 1.
If a <0 thenreturns—1.
If a=0thenreturns 0.
If a=7?thenreturns?.

Function randomSgn
See the section 4.3.2.3.8.

4.3.2.3.5 Functions to manipulate Prime numbers

Although the language allows the handling of prime numbers, all these instructions are very
complex, and can increase the time of simulation considerably.

Function isPrime

See the section 4.3.2.3.1.
Function nextPrime
Signature: nextPrime: Real r ® Real
Description: Returns the next prime number greater thanr.

If r isundefined then returns 2.
If an overflow occur when calculating the next prime number, the constant

INF is returned.
Function nth_Prime
Signature: nth_Prime: Rea n® Real
Description: Returns the ™ prime number, considering as the first prime number the value
2

If nisundefined or non-integer then returns ?.
If an overflow occur when calculating the next prime number, the constant
INF is returned.

34 /67

CD++

User's Guide

4.3.2.3.6 Functions to calculate Minimum and Maximums

Function min

Signature:
Description:

Function max

Signature:
Description:

min : Real ax Real b® Real
Return the minimum between a and b.
If a or b are undefined then returns ?.

max : Real ax Real b® Real
Returns the maximum between a and b.
If a or b are undefined then returns ?.

4.3.2.3.7 Conditional Functions

The functions described in this section allow returning certain real values depending on the
evaluation of a specified logical condition.

Function if

Signature:
Description:

Examples:

Function ifu

Signature:
Description:

Examples:

if : Bool cx Real t x Real f ® Real
If the condition c is evaluated to TRUE, then returns the evaluation of t, else
returns the evaluation of f.

The values of t and f can even come from the evaluation of any expression that
returns areal value, including another if sentence.

If you wish to return the value 1.5 when the natural logarithm of the cell (0, 0)
iS zero or negative, or 2 in another case. In this case, it will be written:

if In((0,0))=00r(0,0)<0,15,2)

If you wants to return the value of the cells (1, 1) + (2, 2) when the cell (O, 0)

isn't zero; or the square root of (3, 3) in another case, it will be written:
if ((0,0)!=0,(1,1)+(2,2),sort(3, 3)

It can also be used for the treatment of a numeric overflow. For example, if the
factorial of the cell (0, 1) produces an overflows, then return —1, else return the
obtained result. In this case, it will be written:

if (fact((O, 1)) = INF, -1, fact((0, 1)))

ifu:Bool cxRed tx Real f x Real u® Real
If the condition c is evaluated to TRUE, then returns the evaluation of t. If it
evaluatesto FALSE, returns the evaluation of f. Else (i.e. isundefined), returns
the evaluation of u.
If you wish to return the value of the cell (0, 0) if its value is distinct than zero
and undefined, 1 if the value of the cell is 0, and p if the cell has the undefined
value. In this case, it will be invoked:

ifu((0,0)!'=0,(0,0),1,PI)

35/ 67

CD++

User's Guide

4.3.2.3.8 Probabilistic Functions

Function randomSgn

Signature:
Description:

Function random

Signature:
Description:

Note:

Function chi

Signature:
Description:

Function beta

Signature:
Description:

Function exponential

Signature:
Descriptin:

Function f

Signature:
Description:

Function gamma

Signature:
Description:

Function normal

Signature:
Description:

randomSign : ® Real
Randomly returns a numerical value that represents a sign (+1 or —1), with
equal probability for both values.

random : ® Real

Returns a random real value pertaining to the interval (0, 1), with uniform
distribution.

random is equivalent to uniform(0,1).

chi : Real df ® Real

Returns a random real number with Chi—Squared distribution with df degree of
freedom.

If df is undefined, negative or zero, then returns 2.

beta: Real ax Real b® Real
Returns arandom real number with Beta distribution, with parameters a and b.
If a or b are undefined or lessthan 10, then returns ?.

exponential : Real av® Real
Returns arandom real number with Exponential distribution, with average av.
If av is undefined or negative, then returns 2.

f : Real dfn x Real dfd ® Real

Returns a random real number with F distribution, with dfn degree of freedom
for de numerator, and dfd for the denominator.

If dfn or dfd are undefined, negatives or zero, then return ?.

gamma: Real ax Real b® Real

Returns a random real number with Gamma distribution with parameters
(a, b).

If a or b are undefined, negatives or zero, then returns ?.

normal : Real mx Real s ® Real

Returns a random real number with Normal distribution (m s), where mis the
average, and s isthe standard error.

If mor s areundefined, or s isnegative, returns ?.

36/ 67

CD++ User's Guide

Function uniform

Signature: uniform : Real ax Real b® Real

Description: Returns a random real number with uniform distribution, pertaining to the
interval (a, b).
If a or b are undefined, or a > b, then returns 2.

Note: uniform(0, 1) is equivalent to the function random.

Function binomial

Signature: binomial : Real nx Real p® Real
Description: Returns arandom number with Binomial distribution, where n is the number of

attempts, and p is the success probability of an event.

If n or p are undefined, n is not integer or negative, or p not pertain to the
interval [0, 1], then return ?.

The returned number is always an integer.

Function poisson
Signature: poisson : Real N® Real
Description: Return a random number with Poisson distribution, with average n.
If nisundefined or negative, then returns ?.
The returned number is always an integer.

Function randint
Signature: randint : Real Nn® Real
Description: Returns an integer random number contained in the interval [0, n], with
uniform distribution.
If nisundefined, then returns 2.
Note: randint(n) is equivalent to round(uniform(0, n))

4.3.2.3.9 Functions to calculate Factorials and Combinatories

Function fact
Signature: fact : Real a® Real
Description: Returns the factorial of a.
If ais undefined, negative or non—integer, then return 2.
If an overflow occur when calculating the next prime number, the constant

INF isreturned.

Examples: fact(3) =6
fact(0) =1
fact(5) = 120
fact(13) = 1.93205e+09
fact(43) = INF

Function comb
Signature: comb : Real ax Real b® Real

Description: Returns the combinatory %9
ebg

37167

CD++ User's Guide

If a or b are undefined, negatives or zero, or non—ntegers, then returns ?. This
valueisalso returned if a<b.

If an overflow occur when calculating the next prime number, the constant
INF isreturned.

4.3.2.4 Functions for the Cells and his Neighborhood

This section details the functions that allow to count the quantity of cells belonging to the
neighborhood whose state has certain value, as also the function cellPos that allows to project an
element of the tuplathat referencesto the cell.

Function stateCount
Signature: stateCount : Real a® Real
Description: Returns the quantity of neighbors of the cell whose stateis equal to a.

Function trueCount
Signature: trueCount : ® Real
Description: Returns the quantity of neighbors of the cell whose stateis 1.
This function is equivaent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

Function falseCount
Signature: falseCount : ® Real
Description: Returns the quantity of neighbors of the cell whose stateis 0.
This function is equivaent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

Function undefCount
Signature: undefCount : ® Real
Description: Returns the quantity of neighbors of the cell whose state is undefined (?).
This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

Function cellPos

Signature: cellPos: Real i ® Real

Description: Returns the i™ position inside the tupla that references to the cell. That is to
say, giventhe cell (Xg,X1,...,Xn), then cellPos(i) = x;.
If the value of i isnot integer, then it will be automatically truncated.
If i T [0, n+1), where n is the dimension of the model, it will produce an errorr
that will abort the simulation.
The value returned always will be an integer.

Examples: Giventhecdl (4, 3, 10, 2):
cellPos(0) =4
cellPos(3.99) = cellPos(3) = 2
cellPos(1.5) = cellPos(1) = 3
cellPos(—1) y cellPos(4) will generate an error.

38/67

CD++ User's Guide

4.3.2.5 Functions to Get the Simulation Time

Function Time
Signature: time: ® Real
Description: Returns the time of the ssimulation at the moment in that the rule this being
evaluated, expressed in milliseconds.

4.3.2.6 Functions to Convert Values between different units

4.3.2.6.1 Functions to Convert Degrees to Radians

Function radToDeg
Signature: radToDeg: Real r ® Real
Description: Convertsthe valuer from radians to degrees.
If r isundefined then returns ?.

Function degToRad
Signature: degToRad : Rea r ® Real
Description: Convertsthe valuer from degreesto radians.
If r isundefined then returns 2.

4.3.2.6.2 Functions to Convert Rectangular to Polar Coordinates

Function rectToPolar_r

Signature: rectToPolar_r : Real xx Real y® Real
Description: Converts the Cartesian coodinate (x, y) to the polar form (r, g), and returnsr.

If x or y areundefined then return 2.

Function rectToPolar_angle

Signature: rectToPolar_angle: Real xx Real y® Real
Description: Converts the Cartesian coordinate (X, y) to the polar form (r, g), and returns g.

If x or y are undefined then return ?.

Function polarToRect_x

Signature: polarToRect_x : Real r x Real q® Real
Description: Convertsthe polar coordinate (r, g) to the Cartesian form (x, y), and returns x.

If r or gareundefined, or r is negative, then returns 2.

Function polarToRect_y

Signature: polarToRect y: Real r x Rea g ® Real
Description: Convertsthe polar coordinate (r, g) to the Cartesian form (x, y), and returnsy.

If r or gareundefined, or r is negative, then returns 2.

39/67

CD++ User's Guide

4.3.2.6.3 Functions to Covert Temperatures between different units

Function CtoF
Signature: CtoF : Red ® Real
Description: Converts avalue expressed in Centigrade degrees to Fahrenheit degrees.
If the value is undefined then returns ?.

Function CtoK
Signature: CtoK : Red ® Real
Description: Converts avalue expressed in Centigrade degrees to Kelvin degrees.
If the value is undefined then returns ?.

Function KtoC
Signature: KtoC : Real ® Real
Description: Converts avalue expressed in Kelvin degrees to Centigrade degrees.
If the value is undefined then returns ?.

Function KtoF
Signature: KtoF : Real ® Real
Description: Converts avalue expressed in Kelvin degrees to Fahrenheit degrees.
If the value is undefined then returns ?.

Function FtoC
Signature: FtoC : Real ® Real
Description: Converts avalue expressed in Fahrenheit degrees to Centigrade degrees.
If the value is undefined then returns ?.

Function FtoK
Signature: FtoK : Real ® Real
Description: Converts avalue expressed in Fahrenheit degrees to Kelvin degrees.
If the value is undefined then returns 2.

4.3.2.7 Functions to manipulate the Values on the Input and Output Ports

Function portValue

Signature: portValue: String p® Real

Description: Returns the last value arrived through the input port p of the cell that is
evaluating. This function will only be able to be used when they are defined
transition functions in the clause PortinTransition (see section 2.3) which
alows to give behavior to the cell when a message arrives from an input port.
If it is used in a function of non defined transition with PortinTransition an
error will be generated in the interpretation of the rule.

If at the time to evaluate the function portValue, a message not arrived for the
port p since the beginning of the simulation, the function will return the
undefined value (?). Once a message has arrived, when being consulted the
value for the port, the last input value will be returned.

40/ 67

CD++

User's Guide

Function send

Signature:
Description:

When using the string “thisPort” as parameter of portValue, is possible to
indicate to the ssimulator that the value of the port that is wanted is the value
from the port for which the message arrived. For example:

Suppose that a cell has associate the input port A, and another cell has
associate the port B. Then it is possible to define functions to calculate the
value from the cell when arriving a message. In this case, we have:

PortInTransition: portA@ell (0, 0) functi onA
PortInTransition: portB@ell(1,1) functi onB
[functionA]

rule: 10 100 { portVal ue(portA) > 10 }
rule: 0 100 {t}

[functionB]

rule: 10 100 { portVal ue(portB) > 10 }
rule: 0 100 {t}

Figure 24 — Example of use of the function portValue

In the example, was created a function for each port. The behavior of both
functions is the same, but as the names of the ports are different, it is not
possible to unify both functions. A possible solution is to make that the ports
of the cells have the same names, for example portN, and to reference to the
value of the port then use portValue(portN). Another solution is to work with
thisPort as is shown in the Figure 25.

Port I nTransition: portA@sell (0, 0) functi onA
PortInTransition: portB@ell(1,1) functi onA
[functionA]

rule: 10 100 { portVal ue(thisPort) > 10 }
rule: 0 100 {t}

Figure 25 — Example of use of the function portValue with thisPort

Thus, the behavior is unified, avoiding the rewriting of afunction.

In the section 16.3, an example of use of the function portValue is showed to
implement a model to classify substances.

send : Stringpx Real x® 0

Sends the value x through the output port p.

If the cells have not associated the port p then an error will be produced and
the simulation will be aborted.

41/ 67

CD++ User's Guide

Every time that a change takes place in a cell, N-CD++ sends this value
through the port Out of the cell. However, in certain the cases it is desirable to
send certain value (that should not necessarily be the state of the cell) to some
cell or DEVS model. For these cases, the function send is used.

It is recommended to use the function in the following way:
{ new_value+ send(P, V) } delay {condition}

In that case, if the condition evaluates to true, then the new vaue of the cell
will be the specified and the value V will be sent through the port P.

The function send always returns the value 0, because it was created with the
idea of sending a value for a port without altering the value of the cell, asit is
exemplified in the following case:

{ (0,0) + send(port1, 15* log(10)) } 100{ (0,0) > 10}

Note: Send is afunction of the language, and then it can be used in any place
where it is possible, for example in the definition of a condition. However, this
is not desirable because a condition can be evaluated and the evaluation can
not be True, and therefore the command send will be executed sending a value
to the port. In this case, use the function send in the expressions that represent
the new value of the cell or that defines the value of the delay, because they
only will be evaluated when the condition is valid.

4.3.3 Predefined Constants

The language used by N-CD++ alows to use predefined constants frequently used in the
domains of the physics and the chemistry.

The constants can be see as functions that don't receive parameters and that always return the
same real value.

Constant Pi
Returns 3.14159265358979323846, which represent the value of p, the relation between the
circumference and the radius of the circle.

Constant e
Returns 2.7182818284590452353, which represent the value of the base of the natura
logarithms.

Constant INF
This constant represents to the infinite value, although in fact it returns the maximum value valid
for a Double number (in processors Intel 80x86, this number is 1.79769 x 10°%).
Note that if, for example, we make x + INF — INF, where x is any rea value, we will get 0 as a
result, because the operator + is associative to left, for that will be solved:
(X + INF) —INF = INF — INF = 0.

42 67

CD++ User's Guide

Note: When being generated a numeric overflows taken place by any operation, it is returned INF
or —INF. For example: power(12333333, 78134577) = INF.

Constant electron_mass
Returns the mass of an electron, which is 9.1093898 x 10~ grams,

Constant proton_mass
Returns the mass of a proton, which is 1.6726231 x 10** grams.

Constant neutron_mass
Returns the mass of a neutron, which is 1.6749286 x 10 >* grams.

Constant Catalan
Returns the Catalan’s constant, which is defined as 5 (- D*.(2* +1) 2, that is approximately
0.9159655941772. k:O

Constant Rydberg

Returns the Rydberg’ s constant, which is defined as 10.973.731,534 / m.

Constant grav
Returns the gravitational constant, defined as 6,67259 x 10 m*/ (kg .)

Constant bohr_radius
Returns the Bohr’ s radius, defined as 0,529177249 x 10° m.

Constant bohr_magneton
Returns the value of the Bohr’s magneton, defined as 9,2740154 x 10%* joule/ tesla.

Constant Boltzmann
Returns the value of the Boltzmann’s constant, defined as 1,380658 x 102 joule/ °K.

Constant accel
Returns the standard acceleration constant, defined as 9,80665 m / sec’.

Constant light
Returns the constant that represents the light speed in a vacuum, defined as 299.792.458 m / sec.

Constant electron_charge
Returns the value of the electron charge, defined as 1,60217733 x 10™ coulomb.

Constant Planck
Returns the Planck’ s constant, defined as 6,6260755 x 10 joule . sec.

Constant Avogadro
Returns the Avogadro’ s constant, defined as 6,0221367 x 10% mols,

43/ 67

CD++ User's Guide

Constant amu
Returns the Atomic Mass Unit, defined as 1,6605402 x 10" kg.

Constant pem
Returns the ratio between the proton and electron mass, defined as 1836,152701.

Constant ideal_gas
Returns the constant of the ideal gas, defined as 22,41410 litres/ mols.

Constant Faraday
Returns the Faraday’ s constant, defined as 96485,309 coulomb / mol.

Constant Stefan_boltzmann
Returns the Stefan-Boltzmann’s constant, defined as 5,67051 x 10° Watt / (m? . °K*)

Constant golden

5

Returns the Golden Ratio, defined as 1T .

Constant euler_gamma
Returns the value of the Euler’s Gamma, defined as 0.5772156649015.

4.4 Techniques to Avoid the Rewriting of Rules

This section describes the different techniques that allows to avoid the rewriting of rules,
alowing to reuse them in other models, and facilitating the reading and maintenance of the model.

4.4.1 Clause Else

When the clause portinTransition is used (see section 2.3) for the description of the function to
use when an external event arrives through an input port, it is possible to use the clause else to give an
aternative behavior in case that none of the rules evaluatesto true, and to avoid to rewriting code.

In the Figure 26 is shown an example of use of the clause Else. The cells of this model use the
function default_rule to calculate their new state, and the cell (13,13) uses the function another_rule
when an external event arrives for the port In. This function is compound of a series of rules. If when
evaluating the conditions of al these rules none of them is valid, the clause else determines that
unction default_rule will be used for the calculation of the state of the cell.

[denoMbdel]
type: cell

link: in in@enoMdel (13, 13)
| ocal Transition: default_rule
portlnTransition: in@enoMdel (13, 13) anot her _rul e

[default_rul €]
rul e:

rul e:

44| 67

CD++ User's Guide

[anot her _rul €]
rule: 1 1000 { portVal ue(thisPort) = 0 }

el se: default_rule

Figure 26 — Example of use of the clause Else

The clause Else can call to any function that defines the behavior of a cell, even to another
function that contains another clause Else and that it describes the behavior before the arrival of an
event for a port of another cell. However, a wrong use of these could generate a circular reference,
which are not detected by the ssimulator, and that it would cause an infinite cycle that would block to
the simulation process, like it is shown in the Figure 27.

[anot her _rul el]

rule: 1 1000 { portVal ue(thisPort) =0 }
rule: 1.5 1000 { (0,0) =5}

rule: 3 1500 { (1,1) + (0,0) >= 1}

el se: anot her _rul e2

[anot her _rul e2]
rule: 1 1000 { (0,0) + portValue(thisPort) > 3}
el se: another _rul el

Figure 27 — Example of acircular reference produced by a bad use of the clause Else

These circular references can also be given in less direct form that could be implied n functions,
where the first function references by means of an else to the second function, the second reference to
the third, ..., the function n—1 reference to the n function, and the n" references to the first.

When the clause else references to the same function where is being used, as is shown in the
Figure 28, N-CD++ will detect this situation and it will produce an error during the parsing process.

[anot her _rul €]

rul e:

rul e:

el se: another _rule

Figure 28 — Example of a circular reference detected by the simulator
4.4.2 Preprocessor — Using Macros

The tool alows to the language to use a preprocessor that acts on the file that contains the
definition of models. This preprocessor can be disabled by means of the parameter —b in the invocation
of the ssimulator, accelerating the load of the models.

The clause #include allows to include the content of afile. Their format is:

#include(fileName)

45/ 67

CD++ User's Guide

where fileName is the name of the file that contains the definition of the macros. This file should be in
the same directory where the file of definition of modelsis.

The clause #include should only be contained in the files of definition of models, and it can exist
more than an inclusion of different filesinside the definition of models.

The clauses #BeginM acro and #EndMacro alow to give beginning and finish to the definition of a
macro.
A macro definition has the form:

#Begi nMacr o(macr oNane)
...definition of the macro..

#EndMacr o

Figure 29 — Format used to definea Macro

The content of the macro is arbitrary and can have any quantity of lines. The definitions of macros
cannot be contained in the same file where they are invoked.

The clause #M acr o allows the use of a previously defined macro, replacing the text that invoke it for
the content of this macro. Their format is:

#Macro(macroName)

The file of macros can contain any quantity of macros, no matter how much of these are used in
the model.

The text that figures outside of the definition of a macro is ignored, alowing in this way to
include comments about the functionality of it.

If arequired macro is not found in none of the files included with the clause #include, an error
will be generated and the tool will abort its execution.

The clause #include can be defined in any place of the file, but always before to the clause
#Macro that uses the macro whose description is contained in the file referenced by the #include.

Inside the definition of amacro, it cannot be carried out an invocation to another macro.
The preprocesador also allows the use comments in any part of a.MA file. The comments begin

with the character ‘% ', and when the preprocesador finds it, ignores the string that are understood
among the character ‘% ' until the end of the line is reached.

46/ 67

CD++ User's Guide

% Here begins the rul es
Rule : 1 100 { truecount > 1 or (0,0,1) = 2} % Val i dat e t he exi stence
% of anot her individual .

Figure 30 — Example of using Comments

If a file contains invocation to macros and/or it uses comments, and when executing the
simulator is passed the parameter —b to disable to the preprocesador, this will generate an incorrect
parsing of the models that maybe doesn't generate an error that abort the simulation, but being able that
the models can't be correctly and thiswill generate an incorrect behaviour.

In the section 16.5 a variant of the implementation of the Game of the Life that is defined in 4
dimensions, and which uses macros and comments.

For details of where the temporary files are generated by the preprocessor, see the Appendix B.

5 File for the Definition of the Initial Values of the Model

To specify the initial values that a model will take you could use the clause Initial CellValue, as
was commented in the section 2.3. This clause allows to specify the name of afile that will contain the
values that will be assigned for some or al the cells of the model before begin the smulation. The
format of thisfileis shown in the Figure 31.

val ue_1

—~
X
@
X
o
X
=]
N—r
1

= val ue_m

—~
<
o -
<
=
<
S
S

|

Figure 31— Format of thefile used to define the initial values of a cellular model

Thisfile must have a series of lines, where each line has the format:
tupla = real_value
For convention, the extension .VAL is used in the name of this kind of files.

The dimension of the tupla should coincide with the defined for the model and should be
contained in the space specified by this dimension.

For the definition of the initial values of a cellular model, a single file should be used, and each
file won't be able to contain theinitial values of two or more models.

It is not necessary that they are defined values for all the cells of the model. Those cells that

don't have associate any value inside the file will be initialized with the value designed by the clause
Initialvalue.

471 67

CD++ User's Guide

The interpretation of the lines of the file is carried out in sequential order. Then, if is defined a
valuefor acell and later anew value for the same one, the assigned value will be the most recent.

Example: In the Figure 32 a file that describes the initial values of some cells of a model of 4
dimensionsis shown.

(0,0,0,0) = ?

(1,0,0,0) = 25
(0,0,1,0) = -21
(0,1,2,2) = 28

(1, 4, 1,2) = 17
(1, 3, 2,1) = 15.44

(0,2,1,1) = -11.5
(1,1,1,1) = 12.33
(1,4,1,0) = 33

(1,4,0,1) = 0.14

Figure 32 — Example of afilefor the definition of theinitial valuesfor a Cellular M odel

6 File of Map of Initial Values

To indicate the initial values for a model is possible the use the clause InitialMapValue, as was
commented in the section 2.3. This clause allows to specify the name of afile that will contain a map
of values that it will be assigned to the cells of the model before begin the simulation. The format of
this file consists of a series of lines, where each one contains area vaue, asit is shown in the Figure
33.

val ue_1

val ue_m

Figure 33 — Format of thefile of Map of valuesfor a Cellular Model

Each value of the defined map will be assigned to a cell of the model according to the order that
is shown in the following example:

Suppose that we have athree-dimensional cellular model of size (2, 3, 2). Then, the first value of
the map will be assigned to the cell (0, O, 0), the second value to the cell (0, 0, 1), the third to the cell
(0,1, 0), thefourth to the cell (O, 1, 1), and so on, until all the cells of the pattern have assigned a value.

If the file that contains the map of values doesn't have enough data to be assigned to al the cells
of the model, an error will occur and the simulation will be aborted. On the other hand, if a map
contains more values of the necessary, the initial values will be assigned until covering the
requirements of the model, and the rest will be ignored.

For convention, the extension .M AP isused in the name of thiskind of files.

48/ 67

CD++ User's Guide

Using the tool ToMap (see section 14) it is possible the conversion of a file that contains the
description of a list of values according to the format described in the section 5 to a file of Map of
Values.

7 File for the definition of External Events

The external events are defined in separated form to the description of the models. The file
consists of a sequence of lines, where each line describes an event with the following format:

HH:MM:SSSMSPORT VALUE

where:
HH:MM:SS.MS indicates the time when the event will occur.
Port indicates the name of the port from which the event will arrive.
Value numerica value for the event. Can be a real number or the undefined
value (?).
Example:

00: 00:10: 00 in 1

00: 00: 15: 00 done 1.5
00: 00: 30: 00 in .271
00: 00: 31:00 in -4.5
00: 00: 33: 10 i nPort 2

Figure 34 — Example of afilefor the definition of the External Events

8 Format of the Events generated as output

The output events generated by the simulator has the format similar to the file of definition of
the external events:

HH:MM:SSSMSPORT VALUE

Example:

00: 00: 01: 00 out 0.000
00: 00: 02: 00 out 1.000
00: 00: 03: 50 out Port ?
00: 00: 07: 31 out Port 5.143

Figure 35— Example of an Output file

49/ 67

CD++ User's Guide

9 Format of the Log File

The log file registers the flow of messages between the models that participates in the
simulation. Each line of the file shows the message type, the time in which occur, the emitter and the
destiny. Thisinformation is common to all the messages. In addition, if the messageistype of X or Y,
then it will include the port and the value. For the messages or type D it will include the time of the
next event, or ‘..." in casethat thistimeisinfinite.

The numbers that figure next to the name of the simulator associated to each model only are for
information for the devel oper.

Example:
Mensaje | / 00:00: 00: 000 / Root (00) para top(01)
Mensaje | / 00:00:00:000 / top(0l1l) para |life(02)
Mensaje | / 00:00:00:000 / life(02) para life(0,0,0)(03)
Mensaje | / 00:00:00:000 / life(02) para life(O,O0, 1) (04)
Mensaje D/ 00:00:00:000 / life(0,0,0)(03) / 00:00:00:100 para |ife(02)
Mensaje D/ 00:00:00:000 / life(0O,0,1)(04) / 00:00:00:100 para |life(02)
Mensaje D/ 00:00:00:000 / life(0,0,2)(05) / 00:00:00:100 para |life(02)
Mensaje D/ 00:00:00:000 / life(0,2,0)(06) / ... para |life(02)
Mensaj e * / 00:00: 00: 100 / Root (00) para top(01)
Mensaj e * / 00:00: 00: 100 / top(0l1l) para |life(02)
Mensaje * / 00:00:00:100 / life(02) para life(0,0,0)(03)
Mensaje * / 00:00:00:100 / life(02) para life(O,O0, 1) (04)
Mensaje Y / 00:00:00:100 / life(0,0,0)(03) / out / 0. 000 para life(02)
Mensaje D/ 00:00:00:100 / life(0,0,0)(03) / ... para |life(02)
Mensaje Y / 00:00:00:100 / life(0,0,1)(04) / out / 10. 500 para life(02)
Mensaje D/ 00:00:00:100 / life(0,0,1)(04) / ... para |life(02)
Mensaje X / 00:00:00:100 / life(02) / nei ghborchange / 0.000 para life(0,0,0)(03)
Mensaje X / 00:00:00: 100 / life(02) / nei ghborchange / 0.000 para life(0,1,0)(06)
Mensaje X / 00:00:00:100 / life(02) / nei ghborchange / 0.000 para life(0,2,0)(09)
Mensaje X / 00:00:00: 100 / life(02) / nei ghborchange / 0.000 para life(0,9,0)(30)

Figure 36 — Fragment of a Log File

10 Output generated by the Parser Debug Mode

When the simulator is invoked with the option —p, the debug mode for the parser is activated, in
which additional information is shown during the interpretation of the rules that define the behavior of
the cellular models. The output generated will consist of a sequence of characters showing the content
of the buffer, where the rules are located and will be processed by the parser, and next a detailed
description of each token that is identified inside the buffer is shown. In this way, if a grammatical
error takes place in the writing of arule, it is possible to identify the location of the error, since the
output will show al the tokens interpreted correctly and the first appearance of an unknown or
erroneous value will be informed.

In the Figure 37 the output generated is shown for the Game of the Life implemented in the
section 16.1.

50/ 67

CD++ User’'s Guide

kkkkkk kK% BUFFER *kkkkkkk*k
1100 { (0,0) =1 and (truecount = 3 or truecount = 4) } 1 100 { (0,0) =0
and truecount = 3} 0100 { t } 0 100 { t }
Nunmber 1 anal yzed
Nunmber 100 anal yzed
Nunmber 0 anal yzed
Nunmber 0 anal yzed
OP_REL parsed (=)

Nunmber 1 anal yzed

AND par sed

COUNT parsed (truecount)
OP_REL parsed (=)

Nunber 3 anal yzed

CR par sed

COUNT parsed (truecount)
OP_REL parsed (=)

Nunmber 4 anal yzed
Number 1 anal yzed
Nunmber 100 anal yzed
Number 0 anal yzed
Number O anal yzed
OP_REL parsed (=)

Number O anal yzed

AND par sed

COUNT parsed (truecount)
OP_REL parsed (=)

Nunmber 3 anal yzed
Nunmber 0 anal yzed
Nunmber 100 anal yzed
BOOL parsed (t)

Number O anal yzed
Nunmber 100 anal yzed
BOOL parsed (t)

Figure 37 — Output generated in the Parser Debug Mode for the Game of Life

11 Output of the Debug Mode for the Evaluation of Rules

Using the parameter —v in the invocation to the simulator is possible to activate the debug mode
for the evaluation of the rules of a cellular model. All rules when being evaluated will show step to step
the results of the evaluations of the functions and operators that compose it.

In the Figure 38 a fragment of the output generated for the Game of the Life implemented in the
section 16.1 when the debug mode is active is shown. The numbers that are shown at the beginning of
each line are not generated, but they have been added especially to refer to certain parts of the text in
the following paragraphs.

The output begins with a dividing line and a legend saying “New Evaluation” (lines 0 and 1),
indicating that a new cell will execute the transition function. Follow this, it is shown in detail the
evaluation of each rule until some of themisvalid.

In the line 2 begins the evaluation of the first rule for the first cell. Here it can be observed that
the value of the cell (0,0) it is 0. In the line 3 the constant 1 is obtained, that later (line 4) will be

51/67

CD++ User’'s Guide

compared against the value obtained in the line 2. The legend “BinaryOp” indicates that a binary
function is evaluating and that it receives as parameters the values 0 and 1, and the name of this
function is between parenthesis, in this case the comparison is used (=). After the name of the function,
we found the result of the evaluation, in this case O (indicating that the comparison gave as a result
false). In the generated output, the value True is represented with a 1 and the False with a 0.

In the line 5 the operation CountNode is used with parameter 1, and its evaluation is compared with the
constant 3intheline 7.

In the line 11 the operation OR is evaluated among the values 0 and O (False and False). Their result is
False.

In the line 13 the final result is indicated for the condition of the rule that is false in this case. Due to
this, the following rule is evaluated (see from the line 15). Finally, in the line 24, the evaluation of the
rule is valid and finishes the evaluation for the condition. Therefore, the delay of this rule is evaluated
(intheline 27). In the line 28, the new value for the cell is calculated, in this case we get the constant O,
but as the delay of the rule, this can be a more complexity expression.

The ellipses of the lines 30 at 33 are not generated for the output, but rather they have been added to
indicate that other evaluations exist.

01 New Eval uati on:
02 Eval uate: Cell Reference(0,0) =0
03 Eval uate: Constant = 1

04 Evaluate: BinaryOp(0, 1) = (=) O
05 Eval uate: CountNode(1l) =1

06 Eval uate: Constant = 3

07 Evaluate: BinaryOp(1, 3) = (=) O
08 Eval uate: CountNode(1l) =1

09 Eval uate: Constant = 4

10 Evaluate: BinaryOp(1l, 4) = (=) 0
11 Eval uate: BinaryQp(0, 0) = (or) O
12 Eval uate: BinaryQp(0, 0) = (and) O
13 Evaluate: Rule = False

14

15 Eval uate: Cell Reference(0,0) =0
16 Evaluate: Constant = O

17 Eval uate: BinaryQp(0, 0)
18 Eval uate: Count Node(1) =
19 Eval uate: Constant = 3

20 Eval uate: BinaryOp(1, 3)
21 Eval uate: BinaryOp(1, 0)
22 Evaluate: Rule = False

=l
—~

1l
~
[EEY

24 Eval uate: Constant = 1
25 Evaluate: Rule = True

27 Eval uate: Constant = 100
28 Eval uate: Constant = 0

35 New Eval uati on:
36 Evaluate: Cell Reference(0,0) =1
37 Evaluate: Constant = 1

52/ 67

CD++ User's Guide

38 Eval uate: BinaryOp(1l, 1)
39 Eval uate: Count Node(1l) =
40 Eval uate: Constant = 3

41 Eval uate: BinaryOp(4, 3)
42 Eval uate: Count Node(1l) =
43 Eval uate: Constant = 4

44 Eval uate: BinaryOp(4, 4)
45 Eval uate: BinaryOp(0, 1)
46 Evaluate: BinaryOp(1l, 1)
47 Evaluate: Rule = True

(=) 1

Dl

(=) 0

i

(=) 1
(or) 1
(and) 1

49 Eval uate: Constant =
50 Evaluate: Constant = 1

Figure 38 — Fragment of the output generated by the debug mode for the Evaluation or Rules

12 Viewing the Results — DrawlLog

The tool DrawlLog allows to represent graphically the activity of the simulator for cellular
models at each instant of time, using for it the data registered in the log file. The possible parameters
are:

—h: shows the following help:

drawl og —[?hnt cl wpOQ]

wher e:

Show t hi s message

Show t hi s message

Specify file containing the nmodel (.ma)

Initial tine

Specify the coupl ed nodel to draw

Log file containing the output generated by SIMJ

Wdth (in characters) used to represent numeric val ues
Preci sion used to represent nuneric values (in characters)
Don't print the zero val ue

oT s —0~"gTw

Figure 39 — Help shown by DrawlLog
—?: similar to —h.

—m: Specifies the filename that contains the definition of the models. This parameter is
obligatory.

—t: Starting time. If it is not defined the tool will begin to show from the time of
simulation 00:00:00:000.

53/ 67

CD++

User's Guide

—c: Name of the cellular model to represent. This parameter is obligatory because the file

specified with —m can contains the description of many models. Only cellular models
are allowed.

—I: Name of log file which has registered the activity of the simulator. If this parameter is

omitted, Drawlog will take the data of the standard input.

—w: Allows to define the width, in characters, of the numeric values that were shown in

the representation. This value should contemplate al the digits of the number, more the
point and the sign of the same (in case this it is negative). For example, —w7 define a
fixed size for each value of 7 positions, and in case these values don't cover this space
their representation will be completed with blank spaces.

By default, Drawlog assumes a value of 10 characters for the width.

For a correct representation it is recommended to use a width that is bigger or similar
to the precision (defined with the parameter —p) + 3.

—p: Allowsto define the precision, in characters, of the numeric values that were shown in

the representation. If it is defined —pO then all the real values will be truncated to
integer values and decimal digits were not shown in their representation. This
parameter is generally used in combination with the option —w. For example: -w6 —p2
define that all the values to show have 6 positions, which 2 will be for the fractional
part, 1 will be for the decimal point, and the 3 remaining positions will be used for the
integer part of the value (including the sign in case this value is negative).

By default, DrawlLog assumes 3 characters for the precision.

—0: With this option, the numbers whose values are 0 won't be shown in the

representation, and in their place blank spaces will be shown. This can be useful to
appreciate certain models where great quantity of its cells has the value 0 and its
contents don't frequently change.

If this parameter is not used in the invocation of the DrawlLog, all the values 0 will be
shown according to the width and precision established.

Example:
drawmog —-mMife.ma —clife —llife.log —w7 —p2 -0
or
simu —mife.ma —lI- | drawog —nife.ma —clife -w7 —p2 -0

Figure 40 — Examplesfor theinvocation to DrawlLog

Note: Remember that if acellular model is executed in CD++ in Flat mode, then the Drawlog won't be
of utility in this case, because the exchange of messages inside the flat coupled model won't be
registered in the log file. For this case, activate the debug mode using the parameter —f of CD++.

DrawlLog has three ways to represent the results at each instant of time for the cellular models
depending on its dimension:

54/ 67

CD++ User’'s Guide

Output for bidimensional cellular models.
Output for three-dimensional cellular models.
Output for cellular models with 4 or more dimensions.

12.1 Representing bidimensional cellular models with DrawlLog

When the model to be represented has dimension 2, DrawlLog will generate a representation that
consists on an schemafor the state of the model at each instant of the simulated time.

In the Figure 41 a fragment of the output generated by the DrawlLog is shown for a two-
dimensional model of dimension (10, 10), where the parameters -w5 —p1 have been used to format the
numeric values.

Line : 238 - Tine: 00:00:00: 000

S S S Ay Sy ey +
0] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
1] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
2| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
3| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
4] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
5| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
6] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
7| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
8] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
9] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]

I 500000000000 000000C0000000000C000000C00000000000C +

0 1 2 3 4 5 6 7 8 9

S S SRR S U AR RS SR SRR +
0] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
1| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]|
2| 24.0 24.0 35.8 24.0 24.0 24.0 24.0 24.0 -6.3 24.0|
3] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
4] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
5] 24.0 24.0 24.0 24.0 24.0 39.5 24.0 24.0 24.0 24.0|
6] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
7] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
8] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 -4.0 24.0|
9] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|

e 0000000000000 0000000000C00000000E0000000000000s +

Figure 41 — Fragment of the output generated for a bidimensional cellular model

12.2 Representing three—dimensional cellular models with DrawlLog

When the model to be represented has dimension 3, DrawlLog will generate a representation that
consists on a series of schemas for the state of the model at each instant of the simulated time. The first
schema represents the state for al the cells in the slice (x, y, 0), the second represents the state for the
cellsinthedice (x, y, 1), and so on until all the slices are shown.

55/ 67

CD++ User’'s Guide

In the Figure 42 a fragment of the output generated by the DrawlLog for a three-dimensional
model of dimension (5, 5, 4) is shown, where the parameters —w1 —p0 —0 have been used to format the
numeric values. At each instant of time, 4 graphics corresponding to the dices (x, y, 0), (X, v, 1), (X, Y,
2) and (%, y, 3) are shown, where 0 £ x, y £ 4.

Line : 247 - Tinme: 00:00: 00: 000

01234 01234 01234 01234
PO + fecsoc + PO + feosos +
0|1 I 0| I 0|1 I 0| I
1111 | 111 1] 1] 111 1 11
2001 | 20 11 2] 111 2| 1
3| |3 1 | 3 1 3| 1|
4 11 4 11 4 1 1] 4 1
PO + fecsoc + PO + feosos +

Line : 557 - Tine: 00:00:00: 100

01234 01234 01234 01234
PO + fecsoc + PO + feosos +
] | o/11 11] o1 11| o 11
1| |1 | 11 |1 1|
2| | 211 1] 21 | 21 11
3] 1| 3 11| 31 11] 3j1 1
4| | 4] I 4| | 4] I
fmcooo + S + fmcooo + Foem-- +

Line : 829 - Tine: 00:00:00: 200

01234 01234 01234 01234

focooo + R + focooo + N +
0| | O] [01 1] 0 |
1] 1] 1] 1] 1] 11| 1] 1]
2| | 2] | 211 1 2| |
3| I 3 I 31 1| 3 I
4| | 4| 1] 41 11 4| 1

focooo + N + focooo + N +

Figure 42 — Fragment of the output generated for a three-dimensional cellular model

12.3 Representing cellular models with 4 or more dimensions

When the models to be represented have 4 or more dimensions, DrawlLog will generate a
representation that consists on a detailed listing of the reference of the cell and its respective value for
each instant of the simulated time. For this mode the parameters —w, —-p and -0 of the DrawlLog don't
be used.

In the Figure 43 afragment of the output generated by the DrawlLog for a model of dimension 4
with size (2, 10, 3, 4) is shown.

Line : 506 - Tine: 00:00:00: 000
(0,0,0,0) =2
(0,0,0,1) =0
(0,0,0,2) =9
(0,0,0,3) =0
(0,0,1,0) =21

56/ 67

CD++

User’'s Guide

(1,9,1,0) = 0
(1,9,1,1) = 4.333
(1,9,1,2) =0
(1,9,1,3) = -2
(1,9,2,0) =6
(1,9,2,1) =0
(1,9,2,2) =7
(1,9,2,3) =0
Line : 789 -
(0,0,0,0) =0
(0,0,0,1) =0
(0,0,0,2) = 13.33
(0,0,0,3) =0
(0,0,1,0) = 5.75
(1,9,1,0) = 6.165
(1,9,1,1) =2
(1,9,1,2) =0
(1,9,1,3) = 1.14
(1,9,2,0) =0
(1,9,2,1) =0
(1,9,2,2) = 5.25
(1,9,2,3) =0

Ti me: 00: 00: 00: 100

Figure 43 — Fragment of the output generated for a model with dimension 4

13 Random Initial States — MakeRand

The tool MakeRand allows to create random initial states, which can be used for simulations of
different models. The possible parameters are:

—h: show the following help:

maker and - [?hnts]

wher e:

Speci fy
Speci fy
Speci fy
sO =
sl-n
s2-n
s3-n

w o35

Show t hi s message
Show t hi s message

file containig the nodel (.nm)

the Cell npdel within the .ma file

the val ue set

Use the values 0 & 1 (Uniform Di stri buti on)
Use the value 1 for n cells & 0 for the rest
Makes randons states for the Pinball Mdel
Randons states for the Gas Di spersion Mde

Figure 44 — Help shown by MakeRand

—?: similar to —h.

57167

CD++ User's Guide

—m: Specifies the filename that contains the definition of the model for which the random
initial state will be created. This parameter is obligatory.

—c: Name of the cellular model. This parameter is obligatory and it will be fundamental to
know the dimension of the model for which the random initial state will be created.

—s. Specifies the type of random initial state that will be generated. This parameter is
obligatory and its possible options are:

—s0: For each cell of the model, a value will be chosen randomly belonging to the
set {0, 1} with the same probability for each value.

—sl-n: Indicates that the model initially will have n cells with value 1 (distributed
randomly according to an uniform distribution) and the rest of the cells will
have the value 0. If n is bigger to the quantity of cells of the model, then an
error will occur and the initial state won't be generated.

For example, if we have a model with 40x40 cells and we want that initially
75% of the cells (1200 cells) has the value 1 and the rest O, the option
—s1-1200 should be written.

—s2-n: Indicates that the random initial state must be for the model of the Pinball.
For this model a value between 1 and 8 will be randomly created for the ball
that will represent the initial direction of it, which will be located randomly
inside the cellular space, and n cells of the model chosen randomly will have
the value 9, representing walls. The rest of the cells will have the value 0.

—s3—n: Indicates that the initia state create must be to use with the model of gas's
dispersion, where n gas's particles will be simulated.

Independently of the type of initial state that will be generated (specified by the parameter —s),
the data created will always be stored in afile as it was described in the section 5 and the name of it
will be generated starting from the name of the file that contains the description of the model (indicated
by the parameter —-m) but with the VAL extension.

14 Converting .VAL files to Map of Values — ToMap

The tool ToMap allows to convert files that contains the description of alist of values according
to the format described in the section 5 to afile of Map of VValues (as was defined in the section 6). The
possible parameters are:

—h: shows the following help:

toMap -[?hnti]

wher e:

Show t hi s message

Show t hi s message

Specify file containig the nodel (.nm)
Specify the Cell nodel within the .ma file

O35

58/ 67

CD++ User's Guide

i Specify the input .VAL file

Figure 45— Help shown by ToMap

—?: similar to —h.

—m: Specifies the filename that contains the definition of the cellular model. This
parameter is obligatory.

—c: Name of the cellular model. This parameter is obligatory and it will be fundamental to
know the dimension of the model to be able to create the Map of Values.

—i: Specifies the name of the .VAL file that contains the list of values that it will be used
for the creation of the Map of Values.

ToMap create a Map of Vaues for the cells of the selected model considering that if acell hasa
value specified in the VAL file, this value will be used in the Map. Otherwise, the value of the Map
for this cell will have the value specified by the clause InitialValue in the definition of the cellular
model.

The file with the created Map of Values will have the same name that the file that contains the
definition of the cellular model, but with the .MAP extension.

15 Converting .VAL files to use with CD++ — ToCDPP

The tool ToCDPP alows to modify the file that contains the description of the modedl (.MA), so
that it will includes the values defined by afile according to the format described in the section 5. The
objective of thisis that the same initial values can be used by CD++, whenever the defined values are
supported by it (O, 1 and ?). The possible parameters are:

—h: shows the following help:

t oCDPP - [?hnti 0]

wher e:

Show t hi s message

Show t hi s message

Specify the input file containig the nodel (.nm)
Specify the Cell model within the .ma file
Specify the input .VAL file

Specify the output .MA file

o 03w

Figure 46 — Help shown by ToCDPP
—?: similar to —h.

—m: Specifies the filename that contains the definition of the cellular model and that
referencesto the file of values (.\VAL). This parameter is obligatory.

59/ 67

CD++ User's Guide

—c: Names of the cellular model. This parameter is obligatory and it will be fundamental
to establish the model to set theinitial values.

—i: Specifies the name of the .VAL file that containsthe list of valuesto be used.
—0: Specifies the name of the output file (MA).
ToCDPP takes the file that contains the definition of models (specified by the parameter —m),
and it generates a file with the same models (specified by —0), but replacing the clause
Initial CellsValue that makes reference to the .VAL file for a sequence of clauses Initial RowValue, such

that if the models are supported by CD++, the generated file can be used by it without the necessity of
depending on the VAL file.

16 Appendix A — Examples

16.1 Game of Life

In the Game of Life, the rules are specified as follow:
An active cell will remain in this state if it has two or three active neighbors.
Aninactive cell will passto active state if it has two active neighbors exactly.
In another case the cell will passto inactive.

The implementation of this model in CD++ isasfollows:

[top]

conponents : life
[life]

type : cel

wdth : 20

hei ght : 20

delay : transport
border : w apped

nei ghbors : life(-1,-1) life(-1,0) life(-1,1)
nei ghbors : life(0,-1) life(0,0) life(O,1)
nei ghbors : life(l,-1) life(1,0) life(1,1)

initialvalue : 0

initialrowalue : 1 00010001111000000000
initialrowalue : 2 00110111100010111100
initialrowalue : 3 00110000011110000010
initialrowalue : 4 00101111000111100011

initialrowalue : 10 01111000111100011110
initialrowalue : 11 00010001111000000000
|localtransition : life-rule

60/ 67

CD++ User’'s Guide

[life-rule]

rule : 1 100 { (0,0)
rule : 1 100 { (0,0)
rule : 0 100 { t }

1 and (truecount = 3 or truecount = 4) }
0 and truecount = 2 }

Figure 47 — Implementation of the Game of Life

16.2 Simulation of the Rebound of an Object

The following is the specification of amodel that represents an object in movement that bounces
against the borders of a room. This example is idea to illustrate the use of a non toroidal cellular
automata, where the cells of the border have different behavior to the rest of the cells.

For the representation of the problem, 5 different values are used for the states of each cell, these
values are:

0 = represents an empty cell.

1 = represents the object moving toward the south east.

2 = represents the object moving toward the north east.

3 = represents the object moving toward the south west.

4 = represents the object moving toward the north west.

The specification of the model is:

[top]
conponents : rebound

[r ebound]

type : cel

wdth : 20

hei ght : 15

delay : transport
defaul t Del ayTime : 100
border : now apped

nei ghbors : rebound(-1,-1) rebound(-1, 1)
nei ghbors : r ebound(0, 0)

nei ghbors : rebound(1,-1) rebound(1, 1)
initialvalue : 0O

initialrowalue : 13 00000000000000000010

|l ocaltransition : move-rule

zone : cornerUL-rule { (0,0) }

zone : cornerUR-rule { (0,19) }

zone : cornerDL-rule { (14,0) }

zone : cornerDR-rule { (14,19) }

zone : top-rule { (0,1)..(0,18) }

zone : bottomrule { (14,1)..(14,18) }
zone : left-rule { (1,0)..(13,0) }
zone : right-rule { (1,19)..(13,19) }

[move-rul €]

rule : 1100 { (-1,-1) =11}
rule : 2 100 { (1,-1) =2}
rule : 3 100 { (-1,1) =3}
rule : 4 100 { (1,1) = 4}
rule : 0 100 { t }

61/67

CD++ User’'s Guide

[top-rul e]

rule : 3 100 { (1,1) =4}
rule : 1100 { (1,-1) =2}
rule : 0 100 { t }

[bott om rul e]

rule : 4 100 { (-1,1) = 3}
rule : 2 100 { (-1,-1) =1}
rule : 0 100 { t }

[left-rule]

rule : 1100 { (-1,1) =3}
rule : 2 100 { (1,1) =4}
rule : 0 100 { t }

[right-rule]
rule : 3 100 { (-1,-

rule : 4 100 { (1,-1) =2}
rule : 0 100 { t

[corner UL-rul €]

rule : 1100 { (1,1) = 4}
rule : 0 100 { t }

[corner UR-rul €]

rule : 3 100 { (1,-1) =2}
rule : 0100 { t }

[corner DL-rul €]

rule : 2 100 { (-1,1) =3}

rule : 0 100 { t }

[corner UR-rul €]
rule : 4 100 { (-1,-1) =1}
rule : 0 100 { t }

Figure 48 — mplementation of the Rebound of an Object

16.3 Classification of Substances

The abjective of this example will be to show the use of specia behavior that can be given to a
cell when an external event arrives through an input port. We have a model that represents the packing
and classification of certain substance that contains 30% of carbon approximately. Also, it has a
machine that locates fractions of 100 grams of that substance in a carry band. This stores them
temporarily until they are processed by a packager that takes these fractions until reaching the kilogram
of weight, and it packs them. Later, the packed substance is classified. If each packet contains 30 + 1 %
of carbon, then it is classified as of first quality; else, it classifies as of second quality.

The model uses the atomic model Generator that generates values (in this case always the
value 1) each x seconds (where x has and Exponential distribution with average 3). These values are
passed to the carry band, represented by a cellular model, which generates each fractions of the
substance. Another cellular model obtains the fractions of the substance from the carry band and it will
carry out the packing tasks (grouping in fractions or 10 elements) and selection.

62/ 67

CD++

User’'s Guide

13
Quality
GFNR |—>| I—P —p
Carrv Band |
Packing & Quality
Classification

Figure 49 — Coupling structurefor the Classification of Substances

The following is the specification of the model:

[top]

conponents : genSubst ances@sener at or queue packi ng
out : outFirstQuality outSecondQuality

link : out @enSunst ances i n@ueue

link : out @ueue in@acking

link : outl@acking outFirstQuality

link : out2@acking outSecondQuality

[genSubst ances]
distribution : exponenti al
mean : 3

initial : 1

increment : O

[queue]
type : cell
width : 6
height : 1

delay : transport

defaultDel ayTine : 1

border : now apped

nei ghbors : cola(0,-1) cola(0,0) cola(0,1)
initialvalue : 0O

in: in

out : out

link : in in@ueue(0,0)

link : out @ueue(0,5) out

|l ocaltransition : queue-rule
portlnTransition : in@ueue(0,0) setSubstance

[queue-rul e]

rule : 1{ (0,0) !'=0 and (0,1) =0}

rule : { (0,-1) } 1 { (0,0) =0 and (0,-1) !'= 0 and not isUndefined((0,-1)) }
rule : 0 3000 { (0,0) !'= 0 and isUndefined((0,1)) }

rule : { (0,0) } 1{t}

[set Subst ance]
rule : { 30 + nornmal (0,2) } 1000 { t }

[packi ng]
type : cell
width : 2
hei ght : 2

delay : transport
defaul tDel ayTime : 1000

63/ 67

CD++ User’'s Guide

border : now apped

nei ghbors : packing(-1,-1) packing(-1,0) packing(-1,1)
nei ghbors : packing(0,-1) packing(0,0) packing(O0,1)
nei ghbors : packing(1,-1) packing(l,0) packing(1,1)
in: in

out : outl out2

initialvalue : 0

initialrowalue : O 00

initialrowalue : 1 00

link : in in@packing(0, 0)

link : in in@packing(1,0)

link : out@packing(0,1) outl

link : out@packing(1,1) out2

|l ocaltransition : packing-rule

portlnTransition : in@acking(0,0) add-rule
portlnTransition : in@acking(1l,0) incQuantity-rule

[packi ng-rul €]

rule : 0 1000 { isUndefined((1,0)) and isUndefined((0,-1)) and (0,0) = 10 }

rule : 0 1000 { isUndefined((-1,0)) and isUndefined((0,-1)) and (1,0) = 10 }

rule : { (0,-1) / (1,-1) } 1000 { isUndefined((-1,0)) and isUndefined((0,1))
and (1,-1) = 10 and abs((0,-1) / (1,-1) - 30) <=1}

rule : { (-1,-1) / (0,-1) } 1000 { isUndefined((1,0)) and isUndefined((0,1))
and (0,-1) = 10 and abs((-1,-1) / (0,-1) - 30) > 1}

rule : { (0,0) } 1000 { t }

[add-rul €]
rule : { portValue(thisPort) + (0,0) } 1000 { portVal ue(thisPort) !'= 0 }
rule : { (0,0) } 1000 { t }

[incQuantity-rule]
rule : { 1 + (0,0) } 1000 { portValue(thisPort) !'= 0 }
rule : { (0,0) } 1000 { t }

Figure 50 — mplementation of the Model to Classify Substances

In the definition of the model Queue that represents to the carry band it can be saw that has a
special behavior for the external messages that arrives to the cell (0,0) coming from the generator of
substances (clause portlnTransition). Also, in the definition of the model Packing this clause is used
to specify the functions that describe the behaviours for the cells (0,0) and (1,0) when a substance
coming from the carry band arrives.

16.4 Game of Life — 3D

The following example is an adaptation of the Game of the Life modelled with a cellular model
of 3 dimensions. They have been carried out modifications on the rules, and in the neighborhood used,
which consists of a cube of size 3x3x3 cdlls.

In the Figure 51 the description of the model is shown in the language provided by the tool,
while in the Figure 52 the file “3dife.val” that containstheinitial valuesfor the model is shown.

[top]
conponents : 3d-life

64 /67

CD++

User's Guide

[3d-1ife]
type : cel
dim: (7,7,3)

delay : transport
defaul t Del ayTi me : 100
border : w apped

nei ghbor s

initialvalue : 0O
initial CellsValue : 3d-life.va
localtransition : 3d-life-rule

[3d-1ife-rule]

rule : 1 100 { (0,0,0)
rule : 1 100 { (0,0,0)
rule : 0 100 { t }

3d-life(-1,-1,-1) 3d-
nei ghbors : 3d-life(0,-1,-1) 3d-
nei ghbors : 3d-life(1,-1,-1) 3d-
nei ghbors : 3d-life(-1,-1,0) 3d-
nei ghbors : 3d-1ife(0,-1,0) 3d-
nei ghbors : 3d-life(1,-1,0) 3d-
nei ghbors : 3d-life(-1,-1,1) 3d-
nei ghbors : 3d-1ife(0,-1,1) 3d-
nei ghbors : 3d-life(1,-1,1) 3d-

life(-1,0,-1)

life(0,0,-1)
life(1,0,-1)
life(-1,0,0)

life(0,0,0)
life(1,0,0)

life(-1,0,1)

life(0,0,1)
life(1,0,1)

3d
3d
3d
3d
3d
3d
3d
3d
3d

life(-1,1,-1)

-life(0,1,-1)
-life(1,1,-1)
-life(-1,1,0)

-1ife(0, 1, 0)
“life(l,1,0)

life(-1,1,1)

life(0,1,1)
life(l,1,1)

1 and (truecount = 8 or truecount =
0 and truecount >= 10 }

10) }

Figure 51 — Implementation of the Game of Life—3D

(0,0,0) =1
(0,0,2) =1
(1,0,0) =1
(1,0,1) =1
(1,1,1) =1
(1,2,0) =1
(1,2,2) =1
(1,3,2) =1
(1,4,2) =1
(1,5,0) =1
(1,5,1) =1
(1,6,0) = 1
(1,6,1) =1
(2,1,2) =1
(2,1,0) =1
(2,3,1) =1

3,2) =1

©) &) O Gl > [[= &p @» Bn o1l [&» Bl o o

PRRPRRPRRPRPRPRRPRREPRREPRRERREER

@) @1 > @9 @ = = © @ B ©Bnl @9 €9 [[(=

RPRRPRRPRPRPRPRPRPRPRPRRRRRLRRPR

Figure 52 —Initial valuesfor the cells of the Game of Life—3D

16.5 Use of Macros

The following example shows the use of macros to model a version of the Game of the Lifein 4

dimensions.

In the Figure 55 the content of the file LIFE.INC is shown. This file contains the definition of
one of the macros used in this variant of the Game of the Life. This type of files can contain several
definitions of macros. Asit can be appreciated, it is possible the inclusion of comments. For this, write

65/ 67

CD++ User's Guide

a text outside of the definition of the macro. All text non-contained between a #BeginMacro and a
#EndMacro isignored.

#i ncl ude(life.inc)
#i ncl ude(life-1.inc)

[top]
conponents : life

[life]

type : cell

dim: (2,10,3,4)

delay : transport
defaul t Del ayTime : 100
border : w apped

nei ghbors : life(-1,-1,0,0) life(-1,0,0,0) life(-1,1,0,0)
nei ghbors : 1ife(0,-8,0,0) life(0,-1,0,0) 1ife(0,0,0,0) life(O,1,0,0)
nei ghbors : life(1,-1,0,0) life(1,0,0,0) Ilife(1,1,0,0)
initialvalue : 0O

initialCellsvValue : |Ilife.val

localtransition : life-rule

[life-rule]
% Conment: Here starts the definition of rules

rule : 1 100 { #macro(Heat) or #macro(Rain) }

rule : 0 100 { (0,0,0,0) = ? OR(0,0,0,0) = 2}
#macro(rul el) % Anot her coment: A macro is invoked

rule : 1 100 { (0,0,0,0) = (1,0,0,0) AND (0,0,0,0) > 1}

#macr o(rul e2)

Figure 53 — Implementation of the Game of Lifewith 4 dimensions and using macr os

(0,0,0,0) = ?
(1,0,0,0) = 25
(0,0,1,0) = 21
(0,1,2,2) = 28

(1, 4, 1,2) = 17
(1, 3, 2,1) = 15.44

Figure 54 —Filelife.val that containstheinitial valuesfor the Game of Lifein 4D

This is a conment: The macro Rul e3 assigns the value 0 if the cell’s value is
3, and 4 if the cell’s value is negative.

#Begi nMacr o(r ul e3)

rule : 0 100 { (0,0,0,0) =
rule : 4 100 { (0,0,0,0) <
#EndMacr o

o w
—

66/ 67

CD++ User's Guide

#Begi nMacr o(rul el)
rule : 0 100 { (0,0,0,0) + (1,0,0,0) + (1,1,0,0) + (0,-8,0,0) = 11 }
#EndMacr o

#Begi nMacr o(Heat)
(0,0,0,0) > 30
#EndMacr o

Figure 55 —Filelifeinc that contains some macros used in the Game of Life 4D

#Begi nMacr o(Rul e2)

rule : 0 100 { (0,0,0,0) =7}
rule : { (0,0,0,0) + 2} 100 { t }
#EndMacr o

#Begi nMacr o(Rai n)
(0,-8,0,0) > 25
#EndMacr o

Figure 56 — Filelife-1l.inc that containsthe remaining macro for the Game of Life 4D

17 Appendix B — The Preprocessor and the Temporary Files

The preprocesador will generate a temporary file that will contain the definition of the models
where previoudy al the macro invocations are replaced by it content (if they exist), and all the
comments are eliminated. This temporary file is passed to the simulator for its interpretation. Due to
this, if the file that contains the definition of models includes invocations to macros or comments, and
in the invocation of the simulator use the parameter —b to ignore to the preprocessor, the simulator will
use directly the file that contains this code without have been make the macro—expansiones and with
the comments, which will generate an incorrect interpretation of the models.

The name of the temporary file is the value returned by the instruction tmpnam of the GCC. For
the selection of the directory where the temporary files were located, the following politic is used:

1. When being compiled the N-CD++, it isincluded inside of the executable code a reference to the
directory established by the variable P_tmpdir located in <stdio.h>. If this directory is not the root
directory, it will be used to store the temporary file.

In Linux this variable usualy has the value: “/TMP”, while in the version of the GCC 2.8.1 for
Windows-32 bits, this variable referencesto the root directory of the disk unit that isin use.

2. Incasethat the previous step references to the root directory, it proceeds to read the content of the
environment variable TEMP. If this variable is defined, their value will be considered as the
directory to use to store the temporary files.

3. If the environment variable TEMP is not defined, it consults the environment variable TMP. If
this variable is defined, their value will be considered as the directory to use to store the
temporary files.

4. If the environment variable TM P neither is defined, the directory to be used will be the directory
where the executable file of the simulator is.

67/67

