CD++

(Parallel version)

Usar’s Guide

Gabriel A. Wainer

Dept. of Systems and Computer Engineering
Carleton University
Ottawa, Canada

Algandro Troccoli
Daniel A. Rodriguez, Amir Barylko, Jorge Beyoglonian

Departamento de Computacion
Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires
Argentina

2001

CD++ User's Guide

Contents

1 N ST I N I KO TR 4
1.1 SYSTEM REQUIREMENTS . .uuutiiiiiiiiitrttieeeeeiiiitsssieessssssisssseessssssssssssssssssssasssssssssssssssssssssssessssssssssssssssssssnses 4
2 1 SRRSO 5
R T O B L TR OROTTR 6

2 STARTING THE SIMULATOR oottt ettt e et s s st s s e s s aaa e e s ebaeesseaaessssabeeessbansssanes 8
2.1 WORKSTATION IMIODEvviiiieiteie i cteie e et e e ettt e s eaee e e ebte e s eesteessesseeessebaeeesasseessanseeessssesssansenesansenessasreeesan 8

3 MODEL DEFINITIONttt ettt ee et e e etee s e st e e e eaae e s saae e s sssaeeesesteeessnneeesssseeessanreeessnnnnas 12
T Y 1 = U To WU = =@ Y N = T I =S 12
50 I R o 0o =0 11/ oo (= S 12

G T 2 1N (0o o Tl 1100 o [F= TR 13

I I 0= 1 I B Y Y 11006 (= £ 14

4 CODING NEW ATOMIC MODELS..... ittt s s et e e s st e e s s saaesssbanassanes 18
4.1 DEFINING THE STATE OF A MODELceiittttiiieeeieiitittiee e e e s sesiatbeeeesssssssabbssssessesssbasssesssssssbssssesssssssssssns 18
4.2 DEFINING A NEW ATOMIC MODEL ..iiiiiiiiititeiieeeiisitittieesesssessassesssssssassssssssssssssssssssssesssssssssssssssssssssssssses 19
4.3 DEFINING THE OUTPUT VALUES . ..ctiiiiiiiittttiie e e e e ettt ee s s e s sesbatbesssssssessabbssssessssssabasseeassssssnbsssseasessssssssses 22
4.4 EXAMPLE. A QUEUE MODEL. ..uuuttitiieiiiiiitieriieseesssissasiessssssesssssssssssssassssssssssssssssssssessssssssssssssssssssssssses 23

5 SUPPORTING FILES ... oottt ettt ettt e s et e s et e e e s ta e e s sabaeassebbeessesbaeessnnnassesbenesan 28
5.1 DEFINING INITIAL CELL VALUESUSING A WAL FILEuteieieitiieceieeeeeeeeeeeestteseesseeessssseeesanssessenssesessnneeas 28
5.2 DEFINING INITIAL CELL VALUESUSING A .MAP FILE ...uvveieiectieeceeeeeeeeieeeeettesseaveessssseeessnsressenssesessnneeas 28
LT T o i = 2 N I =7 = N S = 29
LT N = I T N = 29

6 (@ 10 = I I 31
ST R O 10 = W i V7 = Vi ST 31
6.2 FORMAT OF THE LOG FILE . uutttiiiiiiiiiiiiiiiie ettt ee ettt e s s s bbbt e e e e s s e e bbb e e s e e s s e s asbbaseeassessanbbaneeeeas 31
6.3 PARTITION DEBUG INFOuuuttiiiiiiiiiiitieiiie s e e e sttrt e e s s e s sebbaae e e s e s s s bbbaese s e s s sebabbaeeseesessssbbaseeassessnbbasenasss 33
6.4 OUTPUT GENERATED BY THE PARSER DEBUG IMODE........uuuiiiiiiiiiiiiiiiiee e eeiitree e e e s e ssivvene e e s s e snvsaseeee s 34
6.5 RULE EVALUATION DEBUGGINGccciuvviiiieeiiiiitterieessssiissssseeesesssssssssssssssssssssssssssssesssssssssesssssssssssseess 35

7 UTILITY PROGRAMS ...ttt ettt ettt e s et e e s et e s s et e e s s ebbe e s s sbaseseabaeessbbeessanreeesssnnnas 37
4 R B 17N .Y/ 37
7.1.1 Bidimensional CElUIAr MOEIS..........cueiuieiieie ittt st st re e saeas 38
7.1.2 Three dimensioNal MOGEIS.......c.coiii ittt st s sre s srb e s sae e sare s saaeesaeas 39
7.1.3 Cdlular models of morethan 3 dimENSIONS.........ccceeiviiieieiiie e 40

A = 2 1@ 41
R T 0 1= 10 = = = 41
7.4 RANDOM INITIAL STATES — MAKERAND......coictttttiiee ittt ettt s e et be e e e s s e s s abb e s e e e s s e s sabbareeees 42
7.5 CONVERTING .VAL FILESTOMAPOF VALUES — TOMAP c..ooiiiiictttiei ettt vbene e svvane e 43

8 APENDIX A -LOCAL TRANSITION FUNCTIONSFOR CELLULAR MODELS.........c........ 45
8.1 A GRAMMAR FORWRITING THE RULES ...cciiiiiiiittttiiee e e e sittrtiee s e s s seistteee s s s s sesasbessssssssssssbsssessssssnnssnsesasss 45
8.2 PRECEDENCE ORDER AND ASSOCIATIVITY OF OPERATORScciiiittttiiiieeeeeiitteee e s s s e ssssbsseessssssnsssseeess 47
8.3 FUNCTIONS AND CONSTANTSALLOWED BY THE LANGUAGEuvvieiitveeeeetteeeeeeeeesesreeesensvessensseesssnneeas 47
TR TNt R =T To 1= T V= 11 <R 47
8.3.2 Functions and Operations on Real NUMDEI'S.........ccccveieieieresese s 50
8.3.3 Predefined CONSLANEScoiieiieeie ettt ettt et e s bee et s e sbe s e bt s s sbesssbesssbesesbesssbesessesesbessnsenenns 66

8.4 TECHNIQUESTO AVOID THE REPETITION OF RULESvviiiitiie ettt ettt ee st e s 68
It R O = 101 <Y = TSR 68
8.4.2 PreproCessor — USING IMACIOS........coueiieieieiesie et eiee st see et te e eae e nee e e sbeseeseesae e e enee e eneees 69

2/78

CD++ User's Guide

9 APPENDIX B —EXAMPLES ...t 71
LS 0 R I I T 7 71
0.2 A BOUNCING OBJIECT ..ueeiueeiueesteeseesseeseesseesseessessseessesnsessssssesssessesnsesssesssessssssesssesssemnsesssssnsessesssesnsesnsenns 71
9.3 CLASSIFICATION OF RAW MATERIALSceitteittesteeseeeneeseesseesseesseesseessessssssesssesssesssesssesssssnssssesssesssesssenns 73
S A T o 7 Y | I S 75
0.5 USE OF IMACROS.ttietiueeseeesteesteeteestesstesseesseesseesseansesneesseesseeseenseansesssessensseessesssesnsesnsssnsessesssesnsennsenns 76

10 APPENDIX C—-THE PREPROCESSOR AND TEMPORARY FILES.......ccccciiniennereneene 78

3/78

CD++ User's Guide

CD++

CD++ isatool for the simulation of Parallel DEVS and Paralel Cell-DEV S models. It runs either
in standalone (1 machine) or in parallel mode over a network of machines. This is CD++ User’s
Guide. A complete understanding of the Parallel DEV'S and Cell-DEV S models is assumed. Please,
refer to the CD++ scientific report if necessary.

1 Installation

CD++ was developed to run in UNIX and Windows NT environments that support the MPI library.
It has been successfully tested in clusters of Linux machines running on Pentium processors. It
supports both, parallel and standal one simulation.

The standal one version can aso be compiled to run under Windows systems.
The CD++ distribution includes the following utilities:

Drawlog: drawsthe evolution of a cellular model.

Parlog: Counts the number of (*,t) messages received by each LP during each smulation
cycle.

Logbuffer: required by drawlog and parlog when paralel simulation is used. Sorts the log
messages that are sent to standard output to ensure they are processed in the correct order.
ToMap: createstheinitial state cell map file from a.mafile.

MakeRand: generates arandom initial state cell map file.

1.1 System requirements

The latest version of CD++ is distributed as a .tar.gz file and to install and compile CD++ the
following utilities will be required:

Compiling for UNIX / Linux

makedepend: current version released with X11R6 (part of X-windows software)

GNU Make makefile utility (part of GNU software)

g++: the GNU C++ compiler and accompanying libc, version 2.7.0 or later (part of GNU
software)

an implementation of MPI (e.g. MPICH) (for parallel simulation)

GNU bison

GNU flex

Compiling for Windows
To compile CD++ in Windows the CY GWIN tools are required.
Cygwin: latest version available from http:\\www.cygwin.com. When downloading Cygwin,

select the packages that are listed in Compiling for UNIX / Linux. You will need to get
makedepend also (it is not included in the standard Cygwin distribution)

4/78

CD++ User's Guide

1.2 MPI

For parallel simulation, an implementation of MPI is required. If MPI is already installed in your
system, find out if its includes and lib directories have been aready added to the corresponding
environment variables. Otherwise, take note of these directories because they will be required later
on.

If MPI is not installed on your system, then it is recommended you install MPICH version 1.2.0,
which can be downloaded from http://www.mcs.anl.gov/home/lusk/mpich/index.html. You
can then install MPICH in a shared location (special permissions will be required) or in your home
directory. Basic installation instructions will be provided.

The installation instructions here presented are based on persona experience installing in on Linux
machines. If in doubt, please, check the mpich installation instructions found in install.ps in the
/doc directory.

1. Uncompress the distribution files
gunzip -c mpich.tar.gz | tar xovf

2. Run
Jconfigure

This script will try to set the optimum parameters for compilation on your system. If mpich
will beinstalled in a shared location, then run
Jconfigure -prefix= /usr/local/mpich-1.2.0. (or your preferred location)

4. Compile mpich by running
make >& make.log

This might take several minutes to an hour, depending on your system.

5. Edit the util/machines'machines.LINUX file and set the list of available machines in
the cluster.

6. (Optiona) Install mpich on a shared location
make install
Troubleshooting

If the default settings have not been changed, MPICH will use rsh to run the remote
programs. For rsh to work properly, please check

1. Machine names are properly resolved, either using a DNS or the /etc/hostsfile.

2. Theinet services must be enabled in all the machines.

3. If you want to be able to run rsh without being prompted for a password, you will have
to create a .rhosts file with the names of the machinesin the cluster. The .rhost file must
not have any group permissions enabled. Run chmod 600 .rhosts.

4. If the filesystem is not shared between all of the machines in the cluster, then a copy of
CD++ and any model fileswill be required on each machine.

5/78

CD++ User's Guide

1.3 CD++

Toinstall CD++, gunzip and untar the distribution file. On most Linux machines the command
gunzip -c pcd-3.x.x.tar.gz | tar xovf
will just do this.

The following directory structure will be created

CD++

e warped
o TimeWarp
e NoTime
e Sequential
e common

Fommmmmeeees models
Hmmmmmmmmmeeeee net
o airport

Y ou must then edit Makefile.common and set the desired compilation options:

1. Set the source code location. If running parallel simulation, you will aso need to indicate the
location of the MPI include and lib files.

#CD++ Makefil e. cormon

m

#CD++ Directory Details
export MAI NDI R=/ USERDEFI NEDPATH CD++

#WPl Directory Details

export MPl DI R=/ USERDEFI NEDPATH npi ch-1.2.0
export LDFLAGS +=-L$(MPIDIR)/ i b/

export | NCLUDES CPP += -1$(MPI DI R)/include

#
H

Figure 1: Makefilecommon — Setting the sour ce location

6/78

CD++ User's Guide

2. Specify whether parallel or stand aone simulation will be used. For stand aone simulation, the
NoTime simulation kernel must be used. For paralel simulation, you can choose from the
TimeWarp and NoTime kernel. If not sure, the NoTime kernel is recommended.

#f running parallel sinulation, uncomment the followi ng Iines
export DEFI NES_CPP += - DVPI
export LIBMPI = -|npich

#WARPED CONFI GURATI ON

#Warped Directory Details

#For the TineWarp kernel uncomment the follow ng
#export DEFI NES_CPP += - DKERNEL_TI MEWARP

#export TWDI R=$(MAI NDI R) / war ped/ Ti meWar p/ src
#export PLIBS += -1 TW-Im-Insl $(LIBWI)
#export TW.IB = libTWa

#For the NoTi neKernel, unconment the follow ng
export DEFI NES_CPP += - DKERNEL_NOTI ME

export TWDI R=$(MAI NDI R) / war ped/ NoTi e/ sr c
export PLIBS += -INoTine -Im-Insl $(LIBWPI)
export TWLIB = |i bNoTine. a

Figure 2: Makefilecommon — Choosing the War ped ker nel
3. Decide which atomic models will be included by removing the necessary comments.

#MODELS

#Let's define here which nodels we would like to include in our distribution

#Basi ¢ nodel s

EXAMPLESOBJS=queue.0 nmain.o generat.o cpu.o transduc.o distri.o como |inpack.o
register.o

#Uncomment these lines to include the airport nodels
#DEFI NES_CPP += - DDEVS_Al RPORT

#1 NCLUDES_CPP += -1./nodel s/ ai rport

#LDFLAGS += -L./nodel s/ airport

#LIBS += -lairport

#Uncoment these lines to include the net nodels
#DEFI NES_CPP += - DDEVS_NET

#1 NCLUDES_CPP += -1I./nodel s/ net

#LDFLAGS += - L./ nodel s/ net

Figure 3: Makefilecommon —M odel selection

After you have edited Makefile.common, you are ready to build CD++. To build CD++ and all the
accompanying utilities, issue the following commands:

make depend
make

If you change any settings in Makefile.common you will need to rebuild CD++ again. To do this,

make clean
make

7178

CD++ User's Guide

2 Starting the simulator
Previous versions of CD++ provided two different startup modes. a server mode and a workstation
mode. When running in server mode, the program is started and opens a TCP port through which it
will receive amodel’ s specification. Instead, when the workstation startup is chosen, all settings are
read from files specified in the command line options.
CD++ currently supports the workstation mode only. The server mode option is being devel oped.
2.1 Workstation Mode
To run CD++, type

Jmpirun —np n ./cd++ [-ehIimotdvbfrspgw]

here n indicates the number of machines that will be required. It is important this is the same
number of machines specified in the partition file or the simulation will not work.

Usage:

./ cd++ [-ehl Lot dpPDvbf r sqwj

events file (default: none)

show this hel p

|l ogs all nessages to a log file (default: /dev/null)
*@XYDS]: log nodifiers (logs only the specified nmessages)
nmodel file (default : nodel.m)

out put (default: /dev/null)

stop tinme (default: Infinity)

set tol erance used to conpare real nunbers

print extra info when the parsing occurs (only for cells nodels)
partition details file (default: /dev/null)

paral lel partition file (will run parallel simulation)
eval uat e debug node (only for cells nodels)

bypass the preprocessor (macros are ignored)

flat debug node (only for flat cells nodels)

debug cell rules node (only for cells nodels)

show the virtual tine when the sinulation ends (on stderr)
use quantumto conpute cell val ues

use dynanmi c quantum (strategy 1) to conpute cells val ues
use dynanmi c quantum (strategy 2) to conpute cells val ues
sets the width and precision (with form xx-yy) to show nunbers

EXsSQuTTo=TyQoTarTo3IC T

Figure 4. CD++ command line options

The command line options allowed are:

—efilename: External events filename. If this parameter is omitted, the simulator will not use
external events. The format for external event filesis described in section 5.3.

8/78

CD++ User's Guide

—Ifilename: Log filename. When this parameter is specified, all messages received by each
DEVS processor will be logged. If filename is omitted (only - is specified) all log
activity will be sent to the standard output. But if a filename is given, one log file will be
created for each DEV S processor. The file filename will list all models and the name of
the corresponding logfiles. These file will be named filename XXX where XXX is a
number. When this option is used and no addition log modifiers are defined, all received
messages are logged.

Thelog file format is described in the section 6.2.

—L[I*@XYDS]: alows to define which messages will be logged. This option is useful to
reduce the log overhead. The following messages are supported:

Initialisation messages
(*,t) Internal messages.
(@,t) Collect messages
(q.,t) External messages
(y,t) Output messages
(done,t) Done messages
All sent messages

POXX@.TT

When using drawlog, only Y messages are required. Use the —LY option to reduce
execution time.

—mfilename: Model filename. This parameter indicates the name of the file that contains the
model definition. If this parameter is omitted, the ssimulator will try to load the models
from the model.mafile.

-Pfilename: Partition definition filename. A partition file is used to specify the machine
where each atomic model will run on. Only the location of the atomic models needs to be
specified. CD++ will then determine where the coordinators should be placed.

This file is only required for parallel simulation. If standalone simulation is used, this
setting will be ignored.

The format for a partition fileis described in section 5.4.

—ofilename: output filename. This parameter indicates the name of the file that will be used
to store the output generated by the simulator. If this parameter is omitted, the simulator
will not generate any output. If you wish to get the results on standard output, simply
write —o.

The format for the generated output is described in section 6.1.
—Dfilename: debug filename for partition debug information. When this option is used, one

file for each LP will be created. This file will list all the identification of al DEVS
rocessors running onit.

9/78

CD++

User's Guide

—t: Sets the simulation finishing time. If this parameter is omitted, the simulator will stop
only when there are no more events (internal or external) to process. The format used to
set thetimeisHH:MM:SS:MS, where:

HH: hours

MM: minutes (0 to 59)

SS seconds (0 to 59)

MS. thousandths of second (0 to 999)

—d: Defines the tolerance used to compare real numbers. The value passed with the —d
parameter will be used as the new tolerance value.
By default, the value used is 10°°,

—pfilename: Shows additional information when parsing a cell’s local transition rules. The
parameter must be accompanied with the name of the file that will be used to store the
detail. This mode is useful when a syntax error occurs on complex rules.

The format used to store the output is showed in the section 6.4.

—vfilename: Enables verbose evaluation of the local transition rules. For each rule that is
evaluated, the result of each function and operator will be showed. In addition, this mode
will cause complete evauation of the rules, i.e. it doesn’'t use rule optimization. The
parameter must be accompanied with the filename that will be used to store the
evaluation results.

The format of the output generated when this mode is enabled is described in section 6.5.
—b: Bypass the preprocessor. When this parameter is set, the macros will be ignored.

—r: Enables the rule checking mode. When this mode is enabled, the simulator checks for the
existence of multiple valid rules at runtime. If this condition is true, the simulation will be
aborted. This mode is available in standalone mode.

There are a few specia cases to consider: if a stochastic model is used (i.e. a model that
uses random numbers generators) it might either happen that multiple rules are be valid or
that none of them is. In any case, the ssimulator will notify this situation to the user,
showing a warning message on standard output, but the simulation will not be aborted.
For the first case, the first valid rule will be considered. For the second case, the cell will
have an undefined value (?), and the delay time will be the default delay time specified
for the model.

If this parameter is not used when the simulator is invoked, the mode is disabled and only
will be considered the first valid rule.

—s: Show the simulation’ s finishing time on stderr.
—qvalue: Setsthe value for the quantum.

The value used as quantum must be declared next to the parameter—q, for example: to set
the quantum value as 0.01 the parameter must be —q0.001.

10/78

CD++ User's Guide

If the quantum value is O or the parameter —q is not used, the use of the quantum will be
disabled, and the value returned by the local computing function will be directly the value
of the cell.

—w: Allows to set the wide and precision of the real values displayed on the outputs (log file,
external eventsfile, evaluation resultsfile, etc).
By default, the wide is 12 characters and the precision is of five digits. Thus, of the 12
characters of wide, 5 will be for the precision, 1 for the decimal point, and the rest will be
used for theinteger part that will include a character for the sign if the value is negative.
To set new values for the wide and precision, the —w parameter must be used, followed of
the number of characters for the wide, a hyphen, and the number of characters for the
decimal part. For example to use awide of 10 characters and 3 for the decimal digits, you
must write -w10-3.
Any numerical value that must be showed by the simulator will be formatted using these
values, and it will be rounded if necessary. Thus, if a cell has the value 7.0007 and the
parameter —w10-3 is declared on the invocation of the simulator, the value showed for
the cell on all outputs will be 7.001, but the internal value stored will not be affected.

11/78

CD++ User's Guide

3 Model definition

The simulator requires amodel to run. A model is defined using afile (usaly a.mafile), whichisa
plain text file which details the model components. This section will explain how the structure of
such .mafile.

3.1 Structure of .mafile

A model file is used to define coupled and Cell-DEV'S models. Atomic models are added to the
tool at compile time, and if new atomic models need to be defined, they must be code as detailed in
section 4. A model file consists of a set of groups and definition clauses within the groups. A group
is identified by writing its name between square brackets. All lines following a group declaration
are taken to be parameters for that group and are of the form

Id : value

As an example, mygroup is defined below:

[mygroup]
mygroupparameter : value
mygroupparameter2 : value

Figure 5: Defining groups and group parameters

All model files must have a top group identifying the top level coupled model. A small model
example will be now shown, but Section 8 defines more complex models.

3.1.1 Coupled Models

A coupled model is defined in a group that has the model’s name. For a couple model, four
different parameters exist:

Components:
components : model_namel] @atomicclassl] [model_name2] @atomicclass?] ...

Lists the component models that make the coupled model. If this clause is not
specified, an error will occur. A coupled model might have atomic models or other
coupled model as components. For atomic components, an instance name and a class
name must be specified. This allows a coupled model to use more than one instance of
an atomic class. For coupled models, only the model name must be given. This model
name must be defined as another group in the samefile.

Out:
out : portnamel portname2 ...

Enumerates the model’ s output ports. This clause is optional because a model may not
have output ports.

12/78

CD++ User's Guide

In:
in : portnamel portname2 ...
Enumerates the input ports. This clause is also optional because a couple model is not
required to have input ports.

Link :

link : source_portf@model] destination_port[@model]

Defines the links between the components and between the components and the
coupled model itself. If name of the model is omitted it is assumed that the port
belongs to the coupled model being defined.

A model definition is shown below.

[top]

conponents : transducer @r ansducer generator @ener at or Consuner
Qut : out

Li nk : out @enerator arrived@ransducer

Li nk : out @ener at or i n@onsuner
Li nk : out @onsuner sol ved@ransducer
Li nk : out @ransducer out

[Consuner]

conponents : queue@ueue processor @’rocessor
in: in

out : out

Link : in i n@Queue

Li nk : out @ueue i n@r ocessor
Li nk : out @rocessor done@ueue
Li nk : out @rocessor out

Figure 6: Examplefor the definition of a DEV'S coupled model

3.1.2 Atomic models

As it was mentioned before, atomic models must be coded. In addition, an atomic model might
have user defined parameters that must be specified within the .ma file. If this is the case, the
parameters are specified in a group with the model’s name (the model’s name as defined in the
components clause, not the atomic class name).

[rodel _nane]
var_namel : val uel

var _nanen : val uen

Figure 7: User defined valuesfor atomic models

The parameter names are defined by the model’ s author and must be documented. Each instance of
an atomic model can be configured independently of other instances of the same kind.

13/78

CD++ User's Guide

The next example shows two instances of the atomic class Processor with different values for the
user defined parameters.

[top]
conponents : Queue@ueue Processor1@rocessor Processor2@rocessor

[processor]
distribution : exponentia
mean : 10

[processor 2]
distribution : poisson
mean : 50

[queue]
preparation : 0:0:0:0

Figure 8: Example of setting parametersto DEV S atomic models
3.1.3 Cell DEVS models

Cell DEV S models are a specia case of coupled models. Then, when defining a cellular model, all
the coupled model parameters are available. In addition there exist some parameters that are of
cellular models. These parameters define the dimensions of the cell space, the type delay, the
default initial values and the local transition rules.

These parameters are:

type: [CELL |FLAT]
Defines the abstract ssimulator to be used. If cell is specified, there will be one
DEV S processor for each cell. Instead, if flat is specified, one flat coordinator will
be used. CD++ currently supports the cell option only.

width : integer
Defines the width of the cellular space. As it is the case with height, the width
parameter is provided for backward compatibility and implies that a 2-dimensiona
cellular space will be used. For an n-dimensional cell space the dim parameter
should be used. width and height can not be used together with dim. If such a
situation exists, an error will be reported.

height : integer

Defines the height of the cellular space model. The same restrictions that were
given for width apply. For 1 dimension models, height should be set to 1.

14/78

CD++

User's Guide

dim : (Xo, X1, -y Xp)

Out :

Link :

Border :

Defines the dimensions of the cellular space.
All the x; values must be integers.
Dim can not be used together with any of the width and height parameters.

The vector that defines the dimension of the cellular model must have two or more
elements. For an unidimensional cellular model, the following form should be
used: (Xq, 1).

When referencing acell, all references must satisfy:

Yo, Y1r o0 Yn) OEYi <X "i1=0,.,n
with y; an integer value

Defines the input ports for a cellular model.
Defines the output ports the cellular model.
Defines the components coupling. For a coupled cell model, the components are
cells. To define the couplings, cell references must be used for the model name. A
cell reference is of the form:
CoupleCelIName(X1,X2,...,Xn)

Valid link definitions are of the form:

Link : outputPort inputPort@cellName (X1,Xa,...,Xn)

Link : outputPort@celIName (Xy,Xa,...,Xn) inputPort

Link : outputPort@celIName (X1,X»,...,Xn) inputPort@celIName (X1,X2,...,Xn)
[WRAPPED | NOWRAPPED]
Defines the type of border for the cellular space. By default, NOWRAPPED is

used. If a nonwrapped border is used, areference to a cell outside the cellular space
will return the undefined value (?).

Delay : [TRANSPORT |INERTIAL]

Specifies the delay type used for al cells of the model. By default the value
TRANSPORT is assumed.

DefaultDelayTime : integer

Defines the default delay (in milliseconds) for inputs received from external DEVS
models. If aportInTransition is specified, then this parameter will be ignored for that
cell.

15/78

CD++ User's Guide

Neighbors: cellName (X11, X2.1,---:%n1)-.. CElIName (Xgm, Xo.my----Xnm)

Defines the neighborhood for all the cells of the model. Each cell (Xyi, X2j;...,Xn.i)
represents a displacement from the centre cell (0,0....., 0)

A neighborhood can be defined with any valid list of cells and is not restricted to
adjacent cells.

It is possible to use more than one neighbor s sentence to define the neighborhood.

Initialvalue: [Real | ?]

Defines the default initial value for each cell. The symbol ? represents the
undefined value. There are several ways of defining the initial values for each cell.
The parameter initialvalue has the least precedence. If another parameter defines a
new value for the cell, then that value will be used.

InitialRowValue: row; vaue;...valueygn
Definestheinitial valuefor all thecellsinrow i.

Precondition:
0 £ row; < Height (where Height is the second element of the dimension
defined with Dim, or the value defined with Height).
Can only be used for bidimensional models. For n-dimensional models the
initialCellsValue or initialM apValue parameters are preferred.

This clause is used for backward compatibility. All values are single digit valuesin
theset{?,0,1,2,3,4,5,6, 7,8, 9}. Thefirst digit will define the value for the first
cell in the row, the second for second cell and so on. No spaces are allowed
between digits.

InitialRow : row; value; ... valueygn
Same as initialrowvalue, but values can now be any member of the set A E {?}.
Each value in the list must be separated by a blank space from the next one.
InitialCellsValue: fileName
Defines the filename for the file that contains a list of initial value for cells in the
model. Section 5.1 defines the format for these files. initialcellsvalue can be used

with any size of cellular models and will have more precedence that initialrow and
initialr owvalue.

16/78

CD++ User's Guide

InitialM apValue: fileName

Defines the filename for the file that contains a map of values that will be used as
theinitial state for acellular model. Section 5.2 defines the format for these files.

L ocal Transition : transitionFunctionName

Defines the name of the group that contains the rules for the default local
computing function.

PortInTransition : portName@ cellName (X, Xz,...,%,) transitionFunctionName
It allows to define an alternative local transition for external events. By default, if
this parameter is not used, when an externa event is received by a cell its value

will be the future value of the cell with a delay as set by the defaultDelayTime
clause.

Section 9.3 illustrates the use of the portInTransition clause.

Zone: transitionFunctionName { rangey[..range,] }

A zone defines a region of the cellular space that will use a different local
computing function. A zoneis defined giving asa set of single cells or cell ranges.
A single céell is defined as (Xq,Xa,...,Xn), and a range as (X1,X2,...,.Xn)--(Y1,Y2,¥n). All
cellsand cell ranges must be separated by a blank space.

Asan example,
zone : pothole { (10,10).. (13, 13) (1,3) }
tells CD++ that the local transition rule pothole will be used for the cells in the

range (10,10)..(13,13) and the single cell (1,3). The zone clause will override the
transition defined by the localtransition clause.

17/78

CD++ User's Guide

4 Coding new atomic models

This section will describe how to code new atomic models into CD++. Knowledge of C++ is
required. Users not intending to code new models can skip this section.

A new atomic model is created as a new class that inherits from Atomic. To tell CD++ that a new
atomic definition has been added, the model must be registered in the
ParallelMainSimulator.registerNewAtomics() function. In addition, for an atomic model to support
the TimeWarp protocol, a model’s state has to be defined as a separate class that is derived from
AtomicSate. The current state is available through the function getCurrentState() which returns a
pointer to the model state. States are managed by the Warped kernel, and are only valid through a
simulation cycle. There is no guarantee a pointer returned during a simulation cycle will still be
valid during the next one. In addition, the states are not created until the initFunction is called, so
no state initialization code should be placed in the class constructor.

4.1 Defining the state of a model

The state of a model is made of all those variables that can change during a simulation cycle. The
basic state variables required by an atomic model are defined in the AtomicSate class. A user can
create anew class to define the state variables required by his model.

The AtomicState class declaration is shown below.

class Atom cState : public Mdel State {
publi c:

enum St at e

{

active,
passi ve

State st;

AtonicState(){};
virtual ~Atom cState(){};

At oni cSt at e& operat or=(Atomi cState& thisState); //Assignnent
voi d copyState(BasicState *);
int getSize() const;

Figure 9: The AtomicState class.

To access the current state the function
Model State* getCurrentState()
should be used. The pointer that is returned can be casted to the proper type.

An assignment operator and a copy constructor need to be provided for Warped to work properly.
In addition, the method getSize should be overridden to return the size of the class.

18/78

CD++

4.2

When creating a new atomic model, a new class derived from atomic has to be created. Atomic is
an abstract class that declares amodel’s APl and defines some service functions the user can use to

class Atomic : public Mdel
publi c:
/] Destructor

pr ot ect ed:

virtual Mdel & nitFunction() = O;

virtual Mddel &external Function (const

virtual Moddel &external Function(const External Message &);

virtual Model & nternal Function(const Internal Message &) = 0 ;

virtual Mddel &confluentFunction (const |nternal Message & const MessageBag &);
virtual string classNane() const

/| Kernel services

Vti ne next Change();

voi d | ast Change(Vti ne);

Model &hol dIn(const Atom cState::State & const VIine &) ;

Model &sendCQut put (const VTine & ine, const Port & port , Value val ue)
Mbdel &passivate();

virtual Model State* getCurrentState() const;

/] State shortcuts
Model &state(const AtomicState::State &s)

const AtomicState:: State &state() const
{return ((AtonmicState *)getCurren

1 /] class Atomc

10: The Atomic Class

services are functions that allow the model to tell the ssmulator the current state and duration.
These are:

holdIn(state, VTime)
state for a period of V It
corresponds to the ta(s) function of the DEV'S formalism.
passivate()

external event isreceived.

19/

CD++ User's Guide

sendOutput(VTime, port, BasicM sgValue*):

Sends an output message through the port. The time should be set to the current time. The
user can define any structure for the messages values, as described further on. The simulator
will delete the pointer received.

sendOutput(VTime, port, Value):
This function is provided for backward compatibility. It send areal value through the given

port. Again, the time should be set to the current time. If only real values will be used, then
this function will do.

nextChange():
Returns the remaining time for the next internal transition (sigma).
lastChange():

Returns the time the model last changed, either because an external event was received or an
internal transition took place.

state():

Returns the current model’ s phase.
getPar ameter (modelName, parameter Name)

Returns the parameters the user defined in the .ma file. ModelName is the model’s instance
name, and parameter Name is the name of the parameter to be returned. If the parameter has not
been specified, an empty string is returned.

The new class should override the following functions:
virtual Model &initFunction()

This method is invoked by the simulator at the beginning the simulation and after the model
state has been initialized. All initialization should take place when this method is call. An
active model should usually set the time for the next transition using the holdl n function.

virtual Model & externalFunction (const M essageBag &)
virtual Model & externalFunction(const ExternalM essage &);

These methods are invoked when one or more external events arrive from a port of the model.
It corresponds to the doy function of the DEVS formalism. The simulator calls the first
function, the one that receives a message bag. By default, this function will iterate through al
the messages in the bag and call the second one. This is provided for backward compatibility.
If the modeler would like to have more control on the model’s behavior when multiple
simultaneous events are received, it is recommend the first function is overridden. If the
model’ s behavior is simple enough for simultaneous events to be handled sequentially, then it
will be enough to redefine the second function.

20/ 78

CD++

User's Guide

cl ass MessageBag {
public:
MessageBag(); // Default Constructor
~MessageBag() ;
MessageBag &add(const Basi cPort Message*);
bool portHasMsgs(const string& portNane) const;
const MessageLi st & msgsOnPort (const string& portNanme) const;
int size() const
MessageBag& eraseAll ();
const VTine& tinme() const;
1

Figure 11: MessageBag class

virtual Model &internalFunction(const I nternalM essage &)
This method corresponds to the d;; function of the DEV S formalism.

virtual Model & outputFunction(const CollectM essage &)

This function is called before di. It should send al the output event. Each output event is

sent using the function sendOutput defined below.
virtual Model & confluentFunction (const InternalM essage &, const M essageBag &)

It corresponds to the d..¢ function of the DEV S formalism. By default, it is set to:

Model &Atomi c::confluent Function (const |nternal Message & nt Msg, const
MessageBag &ext Msgs)
{

/| Defaul t behavi or for confluent function:

//Proceed with the internal transition and the with the external

i nternal Function(intMg);

//Set the elapsed tine to O
| ast Change(intMsg.time());

//Call the external function
ext er nal Functi on(ext Msgs);

return *this;

/78

CD++ User's Guide

virtual string className()

4.3

The user can define anew class for the output values. To define a new structure for output values, a
new class that derives from BasicMsgValue has to be created. A class for sending and receiving

There is only restriction that applies: no pointers can be defined as part of the class. Thisis because
message values are sent across a network when parallel simulation is used and pointers will be just

cl ass Basi cMsgVal ue

{
Basi cMsgVal ue() ;
vi rtual ~Basi cMsgVal ue();

rtual int valueSize() const;
virtual string asString() const;

Basi cMsgVal ue(const Basi cMsgVal ue&);

{
public:

Real MsgVal ue(const Val ue& val);
Val u
int val ueSi ze() const;

string asString() const ;

Real MsgVal ue(const Real MsgVal ue&);

12: The BasicM sgValue and RealM sgValue classes

Returns the size of the class. It should be set to:
return sizeof (classNane);

virtual string asString()

Returns a string that is used in the log file to log the value sent or received.

/78

CD++ User's Guide

virtual BasicM sgValue* clone();

Returns a pointer to a new copy of the message value. The function that receives the pointer
will own it and afterwards delete it.

BasicM sgValug(const BasicM sgValue&)

A copy constructor isreguired.

4.4 Example. A queue model.

A queue is a device of temporary storage that uses a FIFO (First In First Out) mechanism. Our
model of a queue will hold any type of user defined value. The queue will have three input ports
and one output port. Values to be stored will be received through the input port In and will later be
sent through the port Out. The input ports start-stop and next will serve to regulate the flow of
values through the output port. Figure 13 shows the structure of our model of a queue.

ouT IN
4+— +“—

QUEUE £ ART-STOP

NEXT
-«

Figure 13: Structure of a Queue

Initialy, the queue is empty. When the first value is received through the input port In, it will be
stored in the queue and forwarded through the output port Out after a time as defined by the user
parameter preparationTime. If avalueisreceived and the queue is not empty, then it will be stored,
but it will not be forwarded immediately. Instead, it will be sent through the output port Out only
after amessage is received through the port next.

A message received through the input port start-stop will temporarily disable the queue. If the
gueue is disabled, it will only respond to new events received through the input port In. Any value
received will be stored, but no output will be ever sent until the queue is enabled again by sending
an event to the start-stop port.

After this brief description, we are ready to begin writing our model. First, we need to define a
class to store the state of the queue. The queue will have two state variables: alist of elements and
a boolean to store the enabled/disabled status. Figure 14 lists the Queue state class declaration and
definition.

Once the state class has been defined, we are ready to implement the model itself. The Queue class
declaration is shown in Figure 15.

23/78

CD++ User's Guide

cl ass QueueState : public AtomicState {
public:
typedef |ist<BasicMsgVal ue *> El enent Li st

El ement Li st el enents ;
bool enabl ed;

QueueState(){};
virtual ~QueueState(){};

QueueSt at e& oper at or =(QueueSt at e& t hi sSt at e)
{
(AtomcState & *this = (AtonicState & thisState;
El enent Li st::const _iterator cursor;

for(cursor = thisState. el ements. begin();
cursor != thisState. el enents.end(); cursor++)

el ement s. push_back(cursor->clone());

return *this;

}

voi d copySt at e(QueueState *)
{ *this = *((QueueState *) rhs);}

int getSize() const
{ return sizeof (QueueState);}

Figure 14: QueueState class

The Queue model overloads the initidlization methods, internal function, externa transition and
output function. In addition, it shortcut functions to access the elements of the current state.

24178

CD++ User's Guide

cl ass Queue : public Atonic

{
public:

Queue(const string &ane = "Queue");

virtual string classNane() const { return "Queue" ;}
pr ot ect ed:

Model &i nitFunction();

Model &external Function(const MsgBag &);

Model &i nt ernal Functi on(const |nternal Message &);
Model &out put Function(const Col | ect Message &);

Model St at e* al | ocat eSt at e()
{ return new QueueState;}

private:
Port & n, &done, &out;

VTi ne preparationTi nme;

QueuesSt at e: : El ement Li st & el ement s()
{ return ((QueueState*)getCurrentState())->el enents; }

bool enabl ed() const
{ return ((QueueState*)getCurrentState())->enabl ed; }

voi d enabl ed (bool val)
{ ((QueueState*)getCurrentState())->enabled = val; }
}; [/l class Queue

Figure 15: The Queue class declar ation

The initFunction has to set the initial state for the queue, as shown in Figure 16. The elements of
thelist will be erased and the enabled will be set to true.

Model &Queue: :initFunction()

enabl ed(true);
return *this;

Figure 16: initFunction for the Queue model

The externaFunction will be activated every time one or more events are received. For the queue
model, this function will have to insert into the queue all values received through port In, schedule
an output if avalueis received through the port next and enabled or disable the queue if an event is
received through port start-stop, as detailed in Figure 17. It is important to notice that it is the
modeler’ s responsibility to set which message will have the highest priority when more than one is
received. For our queue model, it can be seen from Figure 17 that the start-stop messages will
have higher precedence than the done and in messages.

25/78

CD++

User's Guide

Model &Queue: : ext er nal Functi on(const MsgBag & bag)
{
if (portHasMsgs(“start-stop”))
{
enabl ed (!enabled());
if (!'enabled())
passivate();
}
if (enabled() && portHasMsgs(“done”))
{
el ement s(). pop_front();
hol dl n(Atonmi cState::active, preparationTine);
}
if (portHasMsgs(“in”)
{
MessagelLi st::const _iterator cursor;
cursor = bag.nsgOnPort(“in”).begin();
for (; cursor != bag.nsgsOnPort(“in”).end() ; cursor++)
el ement s() . push_back(cursor.val ue());
/11f the queue was enpty, schedule the next transition
if (enabled() &% el enents.size()==nsgsOnPort(“in").size())
hol dl n(Atomi cState::active, preparationTine);
}
}

Figure 17: External transition function for the queue model

The output function is called before an internal transition. In our queue model, the output function
should send the first value in the list through the output port. The interna transition function will
passivate the model which will wait for an external event to take place.

Model &Queue: : out put Function(const Col | ect Message &mrsg)
{
sendQut put (nsg.tine(), out, elenents.front());
return *this;
}
Model &Queue: :internal Function(const |nternal Message &)
{
passi vate();
return *this;
}

Figure 18: Methodsfor the Output Function and the Internal Transition of the Queue

The sendOutput function will delete the pointer it receives, so al memory previously alocated to
store the queue values will be reclaimed.

26/78

CD++ User's Guide

If we wanted to use the queue for a network model, the queue would store IP packets. Then an IP
packet class derived from BasicM sgV a ue should be defined.

Figure 19 lists the definition of the IPPacket class. The only restriction that needs to be placed in
classes derived from BasicM sgValue is that they do not contain any pointers.

cl ass | PPacket : public BasicMsgVal ue
{
public:

char Originl P[15];

char Destinationl D[15];
int Port;

int SequenceNunber;
int Payl oadSi ze;

| PPacket () ;
vi rtual ~IPPacket();

virtual int valueSize() const
{ return sizeof(|PPacket); }

virtual string asString() const;
virtual BasicMsgVal ue* cl one() const;

| PPacket (const | PPacket&);

Figure 19: IP Packet Definition

27/78

CD++ User's Guide

5 Supporting files

5.1 Defining initial cell values using a .val file

Within the definition of a cellular model, the InitialCellValue parameter defines a file name with
the initial values for the cells. This is a plain text file. Each line of the file defines a value for a
different cell. Theformat of thisfileis shownin Figure 20.

= value_1

—
x
@
x
5
x
=)
S
|

val ue_m

—
<
o -
<
5
<
5
S
1

Figure 20: Format of thefile used to definetheinitial values of a cellular model

The extension .VAL is normally used for this kind of files. The file is processed in sequential
order, so if there are two values defined for the same cell, the latest one will be used.

The dimension of the tuple should match the dimensions of the cellular space.

For the definition of the initial values of a cellular model, a single file should be used, which can
not contain initial values for other cellular models.

It is not necessary to define an initial value for each cell. If no value is defined in thisfile, then the
value defined by the parameter Initial Value will be used.

Figure 21 shows ashort fragment of a.val file for a cellular space of 4 dimensions.

(0,0,0,0) = ?

(1,0,0,0) = 25
(0,0,1,0) = -21
(0,1,2,2) = 28

(1, 4, 1,2) = 17
(1, 3, 2,1) = 15.44

(0,2,1,1) = -11.5
(1,1,1,1) = 12.33
(1,4,1,0) = 33

(1,4,0,1) = 0.14

Figure 21: Exampleof afilefor the definition of theinitial valuesfor a Cellular M odel

5.2 Defining initial cell values using a .map file

If the InitialMapValue parameter is used, then the initial values for a cellular model are specified in
a.map file. Thisfile contains amap of cell values, as shown in Figure 22.

28/78

CD++ User's Guide

val ue_1

val ue_m

Figure 22: .map fileformat

Each value of the .map file will be assigned to a cell starting with the origin cell (0,0...,0). For a
three-dimensional cellular model of size (2, 3, 2), the values will be assigned in the following
order:

(0,0,0) (0,0,1) (0,1,0), (0,1,1) (0,2,0) (0,2,1) ... (1,2,0) (1,2,1)

If there are not enough vaues in the file for al the cells in the model, the simulation will be
aborted. If instead there are more values than cells, the remaining values will beignored.

The toMap tool creates a.map file from a.val file.

5.3 External events file

External events are defined in a plain text file with one event per line. Each line will be of the
format:
HH:MM:SSSMSPORT VALUE

where:
HH:MM:SS:MS is the time when the event will occur.
Port is the name of the port from which the event will arrive.
Value is the numerical value for the event. Can be area number or the
undefined value (7).
Example:

00: 00:10: 00 in 1

00: 00: 15: 00 done 1.5
00: 00: 30: 00 in .271
00: 00:31:00 in -4.5
00: 00: 33: 10 i nPort ?

Figure 23: Filewith external events

5.4 Partition file

A partition file is required for parallel simulation. For each atomic model, the partition file defines
the machine that will host its associated simulator. For coupled models, CD++ will decide where
the coordinators will be running.

A partition file, usually referred as a .par file, has lines with the following format:

MachineNumber : modelNamel modelName2 cell(x,y) cell(x,y)..(x2, y2)

A line starts with a machine number (machine numbers start at 0) followed by a space, a colon and
alist of names separated by spaces. Different lines may start with the same machine number.

29/78

CD++ User's Guide

The list of names following a machine number is the list of atomic instances that will be hosted by
that machine. For cellular models, a single cell may be specified or arange of cells may be given.
A cell range is described with name of the coupled cell model followed by the first cell in the
range, two dots, and the last cell in the range.

As an example, consider the following partial definition of amodel:

[top]

conponents : superficie generador Cal or @ener at or gener ador Fri o@zener at or
link : out @enerador Cal or inputCal or @uperficie

link : out @eneradorFrio inputFrio@uperficie

[superficie]

type : cell
width : 100
hei ght : 100

delay : transport

defaul tDel ayTime : 100

border : w apped

nei ghbors : superficie(-1,-1) superficie(-1,0) superficie(-1,1)
nei ghbors : superficie(0,-1) superficie(0,0) superficie(0,1)
nei ghbors : superficie(1,-1) superficie(1,0) superficie(1,1)
initialvalue : 24

in : inputCalor inputFrio

Figure 24 : Partial definition of the heat diffusion model
If we wanted to run thismodel in a cluster of nine machines, then the following isavalid partition:

gener ador Cal or gener ador Fri o
superficie(0,0)..(32,32)
superficie(0,33)..(32, 65)
superficie(0,66)..(32,99)
superficie(33,0)..(65, 32)
superficie(33,33).. (65, 65)
super fici e(33, 66)..(65,99)
superficie(66,0)..(99, 32)
superficie(66, 33)..(99, 65)
superficie(66, 66)..(99, 99)

O~NOOUITARWNPEPOO

Figure 25: Valid partition for the heat diffusion model over 9 machines

A valid partition must specify one and only one location for each atomic and each cell. If more than
one machine or no machine is specified for a model, then an error will be raised and the simulation
will be aborted.

30/78

CD++ User's Guide

6 Output Files

6.1 Output events

If the command line option —o is given, all the output events generated by the simulator are written
to the specified file. There will be one event per line, and lines will have the following format:

HH:MM:SSMSPORT VALUE

Following is asmall example of an output file.

00: 00: 01: 00
00: 00: 02: 00
00: 00: 03: 50
00: 00: 07: 31

out 0.000
out 1.000
out Port ?
out Port 5.143

Figure 26 : Example of an Output file

6.2 Format of the Log File

A log file keeps arecord of all the messages sent between DEV S processors. A log is created when
the 4 command line argument is used. If no log modifiers are specified, all received messages are
logged. Otherwise, only those messages set by the log modifiers will be logged.

When afilename for the log is given, there will be one file per DEV'S processor and one file with
the list of all the names of the files that have been created. This latter file will be named with the
name given after the - parameter. All other files will be named with the name after the -
parameter followed by the DEV S processor id.

Each line of the file shows the number of the LP that received the message, the message type, the
time of the event, the sender and the receiver. In addition, messages of type X or Y will include the
port through which the message was received and the value received. For messages of type D, the
remaining type for the next transition will be shown. A “..." for thisfield will indicate infinity.

The numbers between brackets show the ID of the DEV S processor and are provided for debugging
purposes only.

As an example, the log files for the following model will be shown.

[top]

conponents :

superfici e generador Cal or @xner at or gener ador Fri o@=ener at or

link :
i nk

out @ener ador Cal or i nput Cal or @uperficie

. out @eneradorFrio

i nput Fri o@uperficie

[superficie]

type :

width :
hei ght :

cel |
5
5

Figure 27 : Partial definition of the heat diffusion model

31/78

CD++ User's Guide

When running this model with the —Icalor.log parameter, the following are the contents of
calor.log.

[l ogfiles]

Paral | el Root : cal or.| 0g00
top : calor.log29

superficie : calor.log0l
superficie(0,0) : calor.log02
superficie(0,1) : calor.log03
superficie(0,2) : calor.log04
superficie(0,3) : calor.log05
superficie(0,4) : calor.log06
superficie(1,0) : calor.log07
superficie(1,1) : calor.log08
superficie(1,2) : calor.log09
superficie(1,3) : calor.logl0
superficie(1,4) : calor.logll
superficie(2,0) : calor.logl2
superficie(2,1) : calor.logl3
superficie(2,2) : calor.logl4d
superficie(2,3) : calor.logls
superficie(2,4) : calor.logl6
superficie(3,0) : calor.logl?
superficie(3,1) : calor.logl8
superficie(3,2) : calor.logl9
superficie(3,3) : calor.log20
superficie(3,4) : calor.log21l
superficie(4,0) : calor.log22
superficie(4,1) : calor.log23
superficie(4,2) : calor.log24
superficie(4,3) : calor.log25
superficie(4,4) : calor.log26
gener adorcal or : cal or.|o0g27
generadorfrio : cal or.|0g28

Figure 28: Calor.log

Thisisalist of the models and their corresponding files. If more than onefile is created (as is the
case of coupled models with more than one coordinator), all of them are listed. The log messages
received by the coordinator superficie will be logged into the file calor.log01, which is shown next.

0 | / 00:00:00: 000 / top(29) para superficie(01)

0 D/ 00:00: 00: 000 / superficie(0,0)(02) / 00:00:00: 000 para superficie(01)
0 D/ 00:00: 00: 000 / superficie(0,1)(03) / 00:00:00: 000 para superficie(01)
0 D/ 00:00: 00: 000 / superficie(0,2)(04) / 00:00:00: 000 para superficie(01)
0 D/ 00:00: 00: 000 / superficie(0,3)(05) / 00:00:00: 000 para superficie(01)
0 D/ 00:00: 00: 000 / superficie(0,4)(06) / 00:00:00: 000 para superficie(01)
0 D/ 00:00: 00: 000 / superficie(1,0)(07) / 00:00:00: 000 para superficie(01)
0 D/ 00:00:00: 000 / superficie(1,1)(08) / 00:00:00: 000 para superficie(01)
0 D/ 00:00: 00: 000 / superficie(1,2)(09) / 00:00:00: 000 para superficie(01)
0 D/ 00:00:00: 000 / superficie(1,3)(10) / 00:00:00: 000 para superficie(01)
0 D/ 00:00: 00: 000 / superficie(1,4)(11) / 00:00:00: 000 para superficie(01)
0 D/ 00:00: 00: 000 / superficie(2,0)(12) / 00:00:00: 000 para superficie(01)
0 D/ 00:00:00: 000 / superficie(2,1)(13) / 00:00:00: 000 para superficie(01)
0 D/ 00:00: 00: 000 / superficie(2,2)(14) / 00:00:00: 000 para superficie(01)
0 D/ 00:00:00: 000 / superficie(2,3)(15) / 00:00:00: 000 para superficie(01)
0 D/ 00:00: 00: 000 / superficie(2,4)(16) / 00:00:00: 000 para superficie(01)
0 D/ 00:00:00: 000 / superficie(3,0)(17) / 00:00:00: 000 para superficie(01)
0 D/ 00:00: 00: 000 / superficie(3,1)(18) / 00:00:00: 000 para superficie(01)
0 D/ 00:00:00: 000 / superficie(3,2)(19) / 00:00:00: 000 para superficie(01)
0 D/ 00:00: 00: 000 / superficie(3,3)(20) / 00:00:00: 000 para superficie(01)
0 D/ 00:00:00: 000 / superficie(3,4)(21) / 00:00:00: 000 para superficie(01)
0 D/ 00:00:00: 000 / superficie(4,0)(22) / 00:00:00: 000 para superficie(01)

32/78

CD++

User's Guide

[eNeolNeNolololoNolNolololoNoNole]

O oo

XX

D / 00: 00: 00: 000 / superficie(4,1)(23) / 00:00: 00: 000 para superficie(01)
D / 00: 00: 00: 000 / superficie(4,2)(24) / 00:00:00: 000 para superficie(01)
D / 00: 00: 00: 000 / superficie(4,3)(25) / 00:00:00: 000 para superficie(01)
D / 00: 00: 00: 000 / superficie(4,4)(26) / 00:00:00: 000 para superficie(01)
@/ 00: 00: 00: 000 / top(29) para superficie(01)
Y / 00:00:00: 000 / superficie(0,0)(02) / out / 24.00 para superficie(01)
D / 00: 00: 00: 000 / superficie(0,0)(02) / 00:00:00: 000 para superficie(01)
Y / 00: 00: 00: 000 / superficie(0,1)(03) / out / 24.00 para superficie(01)
D / 00: 00: 00: 000 / superficie(0,1)(03) / 00:00:00: 000 para superficie(01)
Y / 00: 00:00: 000 / superficie(0,2)(04) / out / 24.00 para superficie(01)
D / 00: 00: 00: 000 / superficie(0,2)(04) / 00:00:00: 000 para superficie(01)
Y / 00: 00:00: 000 / superficie(0,3)(05) / out / 24.00 para superficie(01)
D / 00: 00: 00: 000 / superficie(0,3)(05) / 00:00:00: 000 para superficie(01)
Y / 00: 00:00: 000 / superficie(0,4)(06) / out / 24.00 para superficie(01)
D / 00: 00: 00: 000 / superficie(0,4)(06) / 00:00:00: 000 para superficie(01)

/ 00:00: 00: 000 / top(29) / inputcalor / 1. 00 para superficie(01)

/ 00:00:00: 000 / top(29) / inputfrio / 1. 00 para superficie(01)

/ 00:00: 00: 000 / top(29) para superficie(01)

Figure 29: Fragment of calor.log01

6.3 Partition Debug Info

The partition debug info file lists all the DEV'S processors that are taking part of the simulation,
their IDs and they machine they are running in. This file is useful to were the coordinators for
coupled models are placed. One partition debug info file is created by each LP. The files will be
named with the text after the command line —D argument followed by the L P number.

Figure 31 shows afragment of a partition debug file generated when running the model described
in Figure 27 with the partition shown next.

0 :
0 :
1

gener ador Cal or gener ador Fri o
superficie(0,0)..(2,4)
superficie(3,0)..(4,4)

Figure 30: Partition for the heat diffusion model of Figure 27

Model : Par al | el Root
Machi nes:

Model : top
Machi nes:

Model : superficie
Machi nes:

Model : superficie(0, 0)
Machi nes:

Model : superficie(3,0)

Machine: 0 Procld: O < naster >
Machine: 0 Procld: 30 < naster >

Machine: 0 Procld:

1 naster >
Machine: 1 Procld: 2

<
< local >

Machine: 0 Procld: 3 < naster >

33/78

CD++ User's Guide

Machi nes:
Machine: 1 Procld: 18 < local > < naster >

Model : superficie(3,1)
Machi nes:
Machine: 1 Procld: 19 < local > < naster >

Model : superficie(3,2)
Machi nes:
Machine: 1 Procld: 20 < local > < master >

Setting up the | ogical process
Total objects: 31
Local objects: 11
Total machines: 2

About to create the LP

LP has been created. Now registering processors.
Regi st eri ng processor superficie(2)
Regi steri ng processor superficie(3,0)(18)
Regi st eri ng processor superficie(3,1)(19)
Regi steri ng processor superficie(3,2)(20)
Regi st eri ng processor superficie(3,3)(21)
Regi stering processor superficie(3,4)(22)
Regi st eri ng processor superficie(4,0)(23)
Regi steri ng processor superficie(4,1)(24)
Regi st eri ng processor superficie(4,2)(25)
Regi steri ng processor superficie(4,3)(26)
Regi st eri ng processor superficie(4,4)(27)

Current processors:

Processor 1d: 2 Description: superficie
Model 1d: 2 superficie(02)
Parent 1d: 30

Processor |d: 27 Description: superficie(4,4)

Model 1d: 27 superficie(4,4)(27)

Parent 1d: 2
Al'l objects have been regi stered!
Initializing Cbject superficie(2): OK
Initializing Cbject superficie(3,0)(18):
Initializing Object superficie(3,1)(19):
Initializing Object superficie(3,2)(20):
Initializing Object superficie(3,3)(21):
Initializing Object superficie(3,4)(22):
Initializing Object superficie(4,0)(23):
Initializing Cbject superficie(4,1)(24):
Initializing Object superficie(4,2)(25):
Initializing Object superficie(4,3)(26):
Initializing Object superficie(4,4)(27):
After Initialize....OK

Figure 31: Partition debug information file calor.pardebO1 (LP 1)

AR DRRRR S

6.4 Output generated by the Parser Debug Mode

When the simulator is invoked with the option —p, the debug mode for the parser is activated. In
debug mode, the parser will write the parse tree as it reads the rules. All tokens that are successfully

34/78

CD++ User's Guide

processed are shown and if there is a syntax error, the place were the error was detected is
specified.

Figure 32 shows the output generated for the Game Life model asimplemented in section 9.1.

kkkkkkkk%x BUFFER *kkkkkkk*k
1100 { (0,0) =1 and (truecount = 3 or truecount = 4) } 1 100 { (0,0) =0

and truecount = 3} 0 100 { t } 0 100 { t }
Nurmber 1 anal yzed

Nurmber 100 anal yzed
Nurmber O anal yzed

Nurmber O anal yzed

OP_REL parsed (=)

Nurmber 1 anal yzed

AND par sed

COUNT parsed (truecount)

OP_REL parsed (=)

Nurmber 3 anal yzed

OR par sed

COUNT parsed (truecount)

OP_REL parsed (=)

Number 4 anal yzed

Nurmber 1 anal yzed

Nurmber 100 anal yzed
Nurmber O anal yzed

Nurmber O anal yzed

OP_REL parsed (=)

Nurmber O anal yzed

AND par sed

COUNT parsed (truecount)

OP_REL parsed (=)

Nurmber 3 anal yzed

Nurmber O anal yzed

Nurmber 100 anal yzed
BOOL parsed (t)

Nurmber O anal yzed

Nurmber 100 anal yzed
BOCOL parsed (t)

Figure 32: Output generated in the Parser Debug Mode for the Game of Life

6.5 Rule evaluation debugging

Using the -v command line argument, a debug mode for cell rules evaluation is enabled. This will
cause the simulator to log all intermediate values for each rule asiit is evaluated.

Figure 33 shows afragment of the output generated for the Game of the Life model of section 9.1
Line numbers have been added to make the following explanations clear.

The first two lines indicate the beginning of a new evaluation. Line 2 begins the evaluation of the
first rule for the first cell. Each evaluated argument is listed with the partia result for the
expression. Line 2 shows the evaluation of the cell reference (0,0), which turned out to be 0. In line
3, the integer constant 1 is evaluated, which is later compared to O, evaluating to O (false).
BinaryOp indicates that a binary operation is being performed. The operator name will be included
between brackets, as well as the value of each of the operands. Line 13 shows the final result for
the condition of the rule, which was falsein this case.

35/78

CD++

User's Guide

New Eval uati on:
Eval uate: Cell

Eval uat e: Const ant 1

Eval uate: Bi naryQp(0, 1)
Eval uat e: Count Node(1)
Eval uat e: Const ant 3
Eval uate: BinaryOp(1, 3)
Eval uat e: Count Node(1)
Eval uat e: Const ant 4
Eval uate: BinaryOp(1, 4)
Eval uate: Bi naryOp(0, 0)
Eval uate: Bi naryQp(0, 0)
Eval uate: Rule = Fal se

Cel |
Const ant 0

Bi naryOp(0, 0)
Count Node(1)
Constant = 3
Bi naryOp(1, 3)
Bi naryOp(1, 0)
Rul e Fal se

Eval uat e:
Eval uat e:
Eval uat e:
Eval uat e:
Eval uat e:
Eval uat e:
Eval uat e:
Eval uat e:

Const ant 1
Rule = True

Eval uat e:
Eval uat e:

Const ant
Const ant

Eval uat e:
Eval uat e:

New Eval uati on:
Eval uate: Cell

Eval uat e: Const ant
Eval uate: BinaryOp(1,

Eval uat e: Count Node(1)
Eval uat e: Const ant 3
Eval uate: Bi naryQp(4, 3)
Eval uat e: Count Node(1)
Eval uat e: Const ant 4
Eval uate: Bi naryOp(4, 4)
Eval uate: Bi naryQp(0, 1)
Eval uate: BinaryOp(1, 1)
Eval uate: Rule = True

1
1)

Const ant
Const ant

Eval uat e:
Eval uat e:

Ref er ence(0, 0)

[EEY

[EEN

Ref er ence(0

[EEN

Ref er ence(0, 0)

N

I

(=) 0
(or) O
(and) O

(=) 1
(or) 1
(and) 1

Figure 33: Fragment of the output generated by the debug mode for the Evaluation or Rules

36/78

CD++ User's Guide

7 Utility programs

7.1 Drawlog

The DrawlLog utility is used to view the state of a cellular model after each ssimulation cycle as the
simulation advances. Using the log as input, drawlog parses the Y messages to update the state of
each cell in the model. When asimulation cycle finishes, the state of the whole modél is printed.

Drawlog can read the log from afile or from the standard input. Its command line parameters are
shown next:

draw og —[?hnt cl wpO]

wher e:

Show t hi s nessage

Show t hi s nessage

Specify file containing the nodel (.nmm)

Initial tine

Specify the coupl ed nodel to draw

Log file containing the output generated by SIMJ
Wdth (in characters) used to represent nuneric val ues
Preci sion used to represent nuneric values (in characters)
Don't print the zero val ue

Only cell values on a specified slice in 3D nodel s

Too s 0" g3Tw

Figure 34: Help shown by DrawlL og
—?: similar to-h.

—m: Specifies the filename that contains the definition of the models. This parameter
isrequired

—t: Starting time. Sets the time for the first state output. If not specified, 00:00:00:000
will be used.

—c: Name of the cellular model to represent. This parameter is obligatory required
because a.ma file may define more than one cellular model.

—: Name of the log file. If this parameter is omitted, Drawlog will take the data of the
standard input.

—w: Allows to define the print width, in characters, for numeric values. This width will
include the decimal point and sign. For example, —w7 defines a fixed size for each
value of 7 positions. Small numbers will be padded with spaces.

By default, Drawlog uses a width of 10 characters. For correct results a width that
isbigger than the precision (defined with the parameter —p) + 3 is recommended.

—p: Defines the number of digitsto be displayed after the decimal point. If avalue of O

is used, then all the real values will be truncated to integer values. This parameter
is generaly used in combination with the option —w.

37/78

CD++ User's Guide

As an example, consider using the command line arguments —w6 —p2. This will set
the

By default, DrawlLog assumes 3 characters for the precision.
—-0: When this option is specified, avalue of 0 zero will no be shown.

-f: Draws a 3D model as a 2D model. Only the specified plane will be drawn. To
draw plane 0, -fO should be used.

Figure 35 shows two different ways of starting drawlog. The first uses a log file as input. The
second one, instead, takes itsinput from the standard input.

drawog —-mife.ma —clife —llife.log —-w7 —p2 -0
or

pcd —-mMife.ma —I- | drawog -mife.ma —clife -w/ —p2 -0

Figure 35: Examplesfor theinvocation to DrawL og

When parallel simulation is used, the standard input can not be directly used by drawlog because
log messages may arrive out of order. Therefore, it is necessary to sort the messages first. A utility
called logbuffer (described next) has been written for that purpose.

The output format of DrawlLog will depend on the number of dimensions of the cellular model.

Output for bidimensional cellular models.
Output for three—-dimensional cellular models.
Output for cellular models with 4 or more dimensions.

7.1.1 Bidimensional cellular models

A 2 dimensions model will be displayed as a matrix of values. Figure 36 shows a fragment of the
output generated by DrawlL og for a two-dimensional model of size (10, 10). The number width has
been set to 5 and the precision to 1.

38/78

CD++ User's Guide
Li ne 238 - Tine: 00:00:00: 000
0 1 2 3 4 5 6 7 8 9

jfmccscscscoccssscocscocscsoocscocssooococsosoScoooos +
0] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
1] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
2| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
3] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
4 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
5| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
6] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
7] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
8| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
9] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|

jfmccscscscoccssscocscocscsoocscocssooococsosoScoooos +

Li ne 358 - Tine: 00:00:01: 000
0 1 2 3 4 5 6 7 8 9

jfmccscscscoccssscocscocscsoocscocssooococsosoScoooos +
0] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]
1] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]|
2| 24.0 24.0 35.8 24.0 24.0 24.0 24.0 24.0 -6.3 24.0|
3] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
4] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0]|
5] 24.0 24.0 24.0 24.0 24.0 39.5 24.0 24.0 24.0 24.0|
6] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
7] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
8| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 -4.0 24.0]
9] 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|

s 55O OO O COEOCONCNOC0O0COENCODCDCO000COENE00CD000 00 +

Figure 36: Fragment of the output generated for

7.1.2 Three dimensional models

a bidimensional cellular model

For three dimensional models, a matrix representation will be used. Each matrix is one plane of the
cell space. Thefirst plane shown will correspond to (x,y,0), the second one to (x,y,1), and so on.

Figure 37 shows the output of Drawlog when used to draw a cellular space of size (5,5,4) with a
number width of 1, a precision of 0 and zero values not displayed.

Li ne :

Li ne :

247 -
01234

557 -
01234

Ti me: 00: 00:
01234

Ti me: 00: 00:
01234

00: 000
01234

00: 100
01234
o1 11
111 |
211 |
311

1|

01234

39/78

CD++ User's Guide

Line : 829 - Tine: 00:00:00: 200
01234 01234 01234 01234
oo - + R + oo - + R +
0l | 0 | o1 1 0 I
1] 1] 1] 1] 1] 11] 1] 1]
2| | 2 | 211 1] 2| I
3| | 3 | 31 1| 3 I
4 | 4| 1] 41 11| 4] 1]
dm o= + s === + dm o= + s === +

Figure 37 : Fragment of the output generated for a three-dimensional cellular model

7.1.3 Cellular models of more than 3 dimensions

For models of 4 or more dimensions, the matrix representation will not be used. Instead, the values
for each cell will be listed. The options defined with —p, -w and -0 will be ignored.

Figure 38 shows afragment of the output generated by DrawlLog for amodel of size (2, 10, 3, 4).

Line : 506 - Tinme: 00:00:00: 000

(0,0,0,0) = ?
(0,0,0,1) =0
(0,0,0,2) =9
(0,0,0,3) =0
(0,0,1,0) = 21
(1,9,1,0) = 0
(1,9,1,1) = 4.333
(1,9,1,2) = 0
(1,9,1,3) = -2
(1,9,2,0) = 6
(1,9,2,1) = 0
(1,9,2,2) =7
(1,9,2,3) = 0

Line : 789 - Tinme: 00:00:00: 100

(0,0,0,0) =0
(0,0,0,1) =0
(0,0,0,2) = 13.33
(0,0,0,3) =0
(0,0,1,0) = 5.75
(1,9,1,0) = 6.165
(1,9,1,1) = 2
(1,9,1,2) = 0
(1,9,1,3) = 1.14
(1,9,2,0) = 0
(1,9,2,1) =0
(1,9,2,2) = 5.25
(1,9,2,3) = 0

Figure 38: Fragment of the output generated for a model with dimension 4

40/ 78

CD++ User's Guide

7.2 Parlog

Parlog is a utility used to asses the parallelism of a running model. It uses the model log as input
and counts the number of (*,t) messages received by each LP during a simulation cycle. After a
simulation cycle has been completed, a list with the number of messages received by each LP will

be printed.

Parlog reads the log from the standard input. LogBuffer should be used for correct results.

Usage:

PARLOG An utility to determne the |evel of parallelism
usage: parlog -[?hnP]

wher e:
? Show t hi s nessage
h Show t hi s nessage
P Partition file nanme

Figure 39: Parlog command line options
—h: Displays help.

-7 Displays help.

-P: Specifiesthe partition file name. This paramter is required because parlog

needs to know how many LPs are being used.

Figure 40 shows the output generated by parlog with amodel running in for machines.

Time/LP O 1 2 3

00: 00: 00: 000 629 626 626 626
00: 00: 10: 000 5 0 2 3
00: 00: 11: 000 12 3 12 14
00: 00: 12: 000 31 7 32 35
00: 00: 13: 000 60 13 62 66
00: 00: 14: 000 99 21 102 107
00: 00: 15: 000 148 31 152 158
00: 00: 16: 000 207 43 212 219
00: 00: 17: 000 276 57 282 290
00: 00: 18: 000 351 73 358 367
00: 00: 19: 000 428 91 436 446
00: 00: 20: 000 509 131 495 486
00: 00: 21: 000 543 192 531 522
00: 00: 22: 000 575 254 563 554
00: 00: 23: 000 603 317 591 582
00: 00: 24: 000 625 376 614 606
00: 00: 25: 000 627 450 625 626

Figure 40 : Parlog output for a 4 machines partition.

7.3 Logbuffer

Logbuffer is a utility that buffers log messages received through the standard input, sorts them
according to their time, and outputs them to the standard output. It should be used when running

drawlog or parlog piped with the simulator.

41/78

CD++ User's Guide

To run logbuffer use,
logbuffer [-b]
-bn Sets the size of the buffer. The default size is 200.

Both drawlog and parlog require that, for correct results to be obtained, that log messages be
processed in the order determined by their timestamps. When parallel simulation is run and the log
is sent to the standard output, there is no guarantee that messages will be displayed in the same
order that they were generated. Therefore, a sorted buffer is needed.

Logbuffer has an internal buffer of a used defined size, which is aways kept sorted. When the
simulation is started, this buffer is empty. Every new message that arrives is buffered, and no
output is sent till the buffer is full. Once it is full, every new message that arrives causes a new
message to be sent to the standard output. When the simulation finishes, all buffered messages are
sent.

(*.2), (x2), (@73) @3),(*,2,(x,2)
> LOGBUFFER >

Figure 41: Logbuffer receives a message with timestamp 3 and then two messages with
timestamp 2. L ogbuffer sortsand sent in the correct order.

Logbuffer can only guarantee correct results for misplaced messages that occur within a distance
smaller than the size of the buffer.

> /mpirun —np 4 ./pcd —ntal or. ma —Pcal or. par4 —t 00: 01: 00: 000 —I
. /1 ogbuf fer —b5000 | ./draw og —ntal or. ma —csuperficie —w6-p2 > cal or.drw

> ./nmpirun —np 4 ./pcd —ntal or. ma —Pcal or. par4 —t 00: 01: 00: 000 |
./l ogbuf fer —b5000 | ./parlog —Pcal or.par4 > calor.p

Figure 42 : Running pcd with logbuffer.

7.4 Random Initial States — MakeRand

MakeRand is atool to create a.val file with arandom initial state for a cellular model.

42/78

CD++ User's Guide

Usage:

maker and -[?hnts]

wher e:

? Show t hi s nessage

h Show t hi s nessage

m Specify file containig the nodel (.m)

c Specify the Cell nodel within the .ma file

S Specify the val ue set
s0O = Use the values 0 & 1 (Uniform Di stribution)
sl-n = Use the value 1 for n cells & 0 for the rest
s2-n = Makes random states for the Pinball Mdel
s3-n = Random states for the Gas Di spersi on Mdel

Figure 43: MakeRand command line options
—?: similar to —h.

—m: Specifies the filename for the model definition file (.ma)

—c: Name of the cellular model. This parameter is required because the size of the
model needs to be known.

—s: Specifiesthe type of initial state to be created:

—s0: For each cell of the model, a value will be chosen randomly belonging to
the set {0, 1} with the same probability for each value.

—sl—n: Indicates that the model initialy will have n cells with value 1
(distributed randomly according to an uniform distribution) and the rest of
the cells will have the value 0. If n is bigger to the quantity of cells of the
model, then an error will occur and the initial state will not be generated.
For example, if we have a 40x40 cellular and we want 75% of the cdlls
(1200 cells) to have aninitial value of 1, and the remaining cells an initia
value of 0, then —s1-1200 should be used.

—s2—n: Generates arandom initial state for the Pinball model. For this model a
value between 1 and 8 will be randomly generated and randomly place
inside the cellular space. In addition, n cells will be randomly chosen to
represent the walls. The rest of the them will have an initial value of 0.

—s3—n: Creates an initial state for the gas dispersion model with n particles.

The output will be created in a .val file with the same name as the model file.

7.5 Converting .VAL files to Map of Values — ToMap

Thetool ToMap allowsto creates a.map (section 5.2) file from a .val file (section 5.1).

43/78

CD++ User's Guide

Usage:

toMap -[?hnti]

wher e:

Show t hi s nessage

Show t hi s nessage

Specify file containig the nodel (.ma)
Specify the Cell nodel within the .ma file
Specify the input .VAL file

-0 3T

Figure 44 : Command line argumentsfor toMap

—?: same as-h. Shows the command line help.
—m: Specifies the filename (.mafile) with the model definition.
—c: Name of the cellular model.

—i: Specifies the name of the .val file that contains the list of values that it will be used
for the creation of the .map file.

ToMap uses dl values in the .val file to create a map of values. If the .val file does not specify a
value for every cell, then the default value, as specified by the InitialVValue parameter, will be used.

The output file will have the same name as the .ma file but the extension .map will be used instead.

44178

CD++ User's Guide

8 APENDIX A - Local transition functions for cellular models.

Local transition functions for cellular models are defined as groups in the .ma file. They are not
tied to a particular model, so they can be used for more than one cellular model at the sametime. A
local transition is made of a set of rules of the form:

rule: result delay { condition }

A ruleis composed of three elements: a condition, a delay and a result. To calculate the new value
for acell’s state, the simulator takes each rule (in the order in that they were defined) and evaluates
the condition clause. If the condition evaluates to true, then the result and delay clause are
evaluated. The result will be the new cell state and will be sent as an output after the obtained
delay. Whether the previous sate values will be still sent as outputs or not will depend on the delay
type of the cells. Inertial delay cells will preempt any scheduled outputs. On the other hand,
transport delay cellswill keep them.

Rules whose condition clause evaluates to false are skipped. If al the rules are evaluated without
one having a true condition, then the ssimulation will be aborted. If there is more than one rule with
acondition that evaluates to true, the first one will be the one that determines the new cell’s state. If
the delay clause of a cell evaluates to undefined, then the simulation will be automatically
cancelled.

8.1 A grammar for writing the rules

The BNF for the grammar used for the rules is shown in Figure 45. Words written in bold
lowercase represent terminals symbols, while those written in uppercase represent non terminals.

RULELI ST = RULE
| RULE RULELI ST

RULE = RESULT RESULT { BOOLEXP }

RESULT = CONSTANT
| { REALEXP }

BOOLEXP = BOOL
| (BOOLEXP)
| REALRELEXP
| not BOOLEXP
| BOOLEXP OP_BOOL BOOLEXP

OP_BOOL =and | or | xor | imp | eqv

REALRELEXP = REALEXP OP_REL REALEXP
| COND_REAL_FUNC(REALEXP)

REALEXP = | DREF
| (REALEXP)
| REALEXP OPER REALEXP

CONSTANT

FUNCTI ON

port Val ue(PORTNANME)
send(PORTNAME, REALEXP)

| DREF = CELLREF
I
I
|
| cell Pos(REALEXP)

45/ 78

CD++

User's Guide

CONSTANT =

FUNCTI ON =

CELLREF =

REST_TUPLA =

BOCL =

| NT
| REAL

| CONSTFUNC
| 2

UNARY_FUNC(REALEXP)

| W THOUT_PARAM FUNC

| Bl NARY_FUNC(REALEXP, REALEXP)

| if(BOOLEXP, REALEXP, REALEXP)

| ifu(BOOLEXP, REALEXP, REALEXP, REALEXP)

(I'NT, INT REST_TUPLA

, | NT REST_TUPLA

OP_REL = =

OPER =
| NT =
REAL =
SI GN =
DG T =
PORTNAME =
STRI NG =
LETTER =

CONSTFUNC =

[SSGN] DAT {DdT}

INT | [SIGN] {DAT}.DGAT {DdT}
+ | -

0| 1] 2] 3| 4| 5| 6] 7] 8] 9
thisPort | STRING

LETTER {LETTER}
alb|]c]|]...|l z| Al B|] C]|...| Z

pi | e| inf | grav | accel | light | planck | avogadro |
faraday | rydberg | euler_gamma | bohr_radius | boltzmann

bohr _magneton | golden | catalan | amu | el ectron_charge |
i deal _gas | stefan_boltzmann | proton_mass | el ectron_mass

neutron_mass | pem

W THOUT_PARAM FUNC = truecount | fal secount | undefcount | time | random |

UNARY_FUNC =

BI NARY_FUNC =
|

COND_REAL_FUNC =

randonti gn

abs | acos | acosh | asin | asinh | atan | atanh | cos |
sec | sech | exp | cosh | fact | fractional | In | log |
round | cotan | cosec | cosech | sign | sin | sinh |
statecount | sqgrt | tan | tanh | trunc | truncUpper |
poi sson | exponential | randint | chi | asec | acotan |
asech | acosech | nextPrime | radToDeg | degToRad |

nth prime | acotanh | CGtoF | CtoK | KtoC | KtoF | FtoC |
Ft oK

conb | logn | max | min | power | remminder | root | beta
gamma | lem | ged | normal | f | uniform | binom al |
rect ToPol ar _r | rectToPol ar_angle | pol arToRect_x | hip |
pol ar ToRect _y

even | odd | islnt | isPrine | isUndefined

46/ 78

CD++ User's Guide

Figure 45: Grammar used for the definition of a cell’slocal transition

Basicaly, aruleis made of three expressions: aresult expression, adelay expression and a boolean
expression. The result expression should evaluate to any real value. The delay expression should
also evaluate to any real value that will be truncated to the smallest integer.

8.2 Precedence Order and Associativity of Operators

The precedence order indicates which operation will be solved first. For example if we have:
C+B*A

where * and + are the sum and multiplication operations for real numbers, and A, B and C are red
constants, then since * has higher precedence than +, B * A will be evaluated first. The sum will be
evaluate in a second step. The result will be equivalent to solve C + (B * A).
The associativity indicates which of two operations of same precedence will be evaluated first.
Operators are either left associative or right associative. The logica operators AND and OR are | eft
associative, so the in the expression

CandBor D
will be solved as (C and B) or D

Clauses that are not associative cannot be combined simultaneously without another operator of
different precedence.

Thetable of precedence and associativities for the rule specification language follows:

Order Code Associdtivity
Lower AND OR XOR IMP EQV L eft
Precendence NOT Right
= I= > < >= <=
+ - Left
* L eft
FUNCTION
Higher REAL INT BOOL COUNT ? STRING CONSTFUNC
Precedence ()

Figure 1 —Precedence Order and Associativity used in CD++

8.3 Functions and Constants allowed by the language

8.3.1 Boolean Values

Boolean valuesin CD++ usetrivalent logic.

The trivalent logic use the values T or 1 to represent to the value TRUE, F or O to represent the
FALSE, and ? to represent to the UNDEFINED.

47178

CD++ User's Guide

8.3.1.1 Boolean Operators

8.3.1.1.1 Operator AND

The behavior of the operator AND is defined with the following table of truth:

AND [T [F[?
T [T[F[?
F |[F|F[F
2 |2|F[?

Figure 46: operator AND truthtable

48/78

CD++ User's Guide

8.3.1.1.2 Operator OR

The behavior of the operator OR is defined with the following table of truth:

OR [T[F[~?
T |T[T][T
F [T[F[?
2 [T[2]7>

Figure 47: Operator OR truthtable
8.3.1.1.3 Operator NOT

The behavior of the operator NOT is defined with the following table of truth:

NOT
T [F
F [T
? ?

Figure 48: Behavior of the boolean operator NOT
8.3.1.1.4 Operator XOR

The behavior of the operator XOR is defined with the following table of truth:

XOR
T

=
?

~|=|m|H

~|m|—=[m

NN

Figure 49: Operator XOR truthtable
8.3.1.1.5 Operator IMP

IM P represents the logic implication, and its behavior is defined with the following table of truth:

IMP
T

[=
?

—|—[4]|H

~|=[nfm

= [of

Figure 50: Operator IMP truthtable

49/78

CD++ User's Guide

8.3.1.1.6 Operator EQV

EQV represents the equivalence between trivalent logic values, and its behavior is defined with the
following table of truth:

EQV [T[F[?
T |[T|F[F
F |F|T[F
2 |F|F[T

Figure 51: Operator EQV truthtable
8.3.2 Functions and Operations on Real Numbers

8.3.2.1 Relational Operators

The relational operators work on real numbers' and return a boolean value pertaining to the
previoudy defined trivalent logic. The language used by CD++ allows the use of the operators ==,
I=, >, <, >=, <= whose behavior is described next.

As opposed to the traditional definition of these operators, the introduction of an undefined value
makes the definition of a total order impossible because the value ? is not comparable with any
existing real number.

8.3.2.1.1 Operator =

The operator = is used to test for equality of two real numbers.

= ? Real Number
? T ?
Real Number ? = of real number

Figure 52: Behavior of the Relational Operator =

8.3.2.1.2 Operator !=

The operator !=isused to test if two real numbers are not equal. Its behavior is defined as follows:

1= ? Real Number
? F ?
Real Number ? 1 of real number

Figure 53: Behavior of the Relational Operator !=

! From here, when referring to the term “Real Number” avaluein theset RE { 2} will be meant.

50/ 78

CD++

8.3.2.1.3 Operator >

The operator > is used to test if area number is greater than another real number. Its behavior is

defined as follows:

> ? Real Number
? F ?
Real Number ? > of real number

Figure 54 : Behavior of the Relational Operator >

8.3.2.1.4 Operator <

The operator < is used to test if a real number is less then another real number. Its behavior is

defined as follows:

< ? Real Number
? F ?
Real Number ? < of real number

Figure 55: Behavior of the Relational Operator <

8.3.2.1.5 Operator <=

The operator <= isused to test if areal number isless or equal to another real number. Its behavior
is defined as follows:

The operator >= is used to test if a real number is greater or equal to another real number. Its

<= ? Real Number
? T ?
Real Number ? £ of real number

Figure 56 : Behavior of the Relational Operator <=
8.3.2.1.6 Operator >=

behavior is defined as follows:

>= ? Real Number
? T ?
Real Number ? 3 of real number

Figure 57: Behavior of the Relational Operator >=

8.3.2.2 Arithmetic Operators

The traditional arithmetic operators are available. If any of the operands is undefined, then the
result of the operation will be undefined. This is also valid for functions. If any of a function
arguments is undefined, the result of evaluating the function will also be undefined.

51/78

CD++

User's Guide

The available operators are:

opl +op2 returnsthe sum of the operators.

opl—op2 returnsthe difference between the operators.
opl/op2 returnsthe value of the opl divided by op2.
opl* op2 returnsthe product of the operators.

Figure 58: Arithmetic Operators

Division by zero will result to the undefined value.

8.3.2.3 Functions on Real Numbers

8.3.2.3.1 Functions to Verify Properties of Real Numbers

The functions in this section allow to check for specia properties of real numbers, such as parity,

primality, etc.

Function Even
Signature:

Description:

Examples:

Function Odd
Signature:

Description:

Examples:

Function islnt
Signature:

Description:

Examples:

Function isPrime
Signature:

Description:

Examples:

even : Real ® Bool
Returns True if the value is integer and even. If the value is undefined
returns Undefined. In any other caseit returns False.

even(?) =F
even(3.14) =F
even(3) =F
even(2) =T

odd : Real ® Bool

Returns True if the value is integer and odd. If the value is undefined
returns Undefined. In any other caseit returns False.

odd(?) =F

odd(3.14) = F

odd(3) =T

odd(2) =F

isint : Real ® Bool
Returns True if the value is integer and not undefined. Any other case
returns False.

isint(?) =F
isint(3.14) = F
isint(3) =T

isPrime: Real ® Bool
Returns Trueif the value is a prime number. Any other case returns False.
isPrime(?) = F

isPrime(3.14) = F
isPrime(6) = F
isPrime(5) = T

52/78

CD++ User's Guide

Function isUndefined

Signature: isundefined : Real ® Bool
Description: Returns Trueif the value is undefined, e se returns False.
Examples: isUndefined(?) =T

isUndefined(4) = F
8.3.2.3.2 Mathematical Functions
This section describes commonly used mathematical functions.

832321 Trigonometric Functions

Function tan
Signature: tan : Real a® Real
Description: Returns the tangent of a measured in radians.
For the values near to p/2 radians, returns the constant INF.
If ais undefined then return undefined.
Examples: tan(Pl / 2) = INF
tan(?) =?
tan(P1) =0
Function sin
Signature: sin: Real a® Real
Description: Returns the sine of a measured in radians.
If a hasthe value ? then returns 2.
Function cos
Signature: cos: Real a® Real
Description: Returns the cosine of a measured in radians.
If a hasthe value? the returns?.
Function sec
Signature: sec: Real a® Real
Description: Returns the secant of a measured in radians.

If a hasthe value? then returns?.

If the angleis of the form p/2 + x.p, with x an integer number, then returns
the constant INF.

Function cotan
Signature: cotan : Real a® Real
Description: Calculates the cotangent of a.
If a hasthe value? Then returns 2.

If aiszero or multiple of p, then returns INF.

Function cosec
Signature: cosec : Real a® Real
Description: Calculates the cosecant of a.
If a hasthe value ?, then returns?.

If aiszero or multiple of p, then returns INF.

Function atan

53/78

CD++ User’'s Guide
Signature: atan : Real a® Real
Description: Returns the arc tangent of a measured in radians, which is defined as the
value b such tan(b) = a.
If a hasthe value? Then returns?.
Function asin
Signature: asin : Real a® Real
Description: Returns the arc sine of a measured in radians, which is defined as the value

Function acos
Signature:

Description:

Function asec
Signature:

Description:

Function acotan
Signature:

Description:

Function sinh
Signature:

Description:

Function cosh
Signature:

Description:

Function tanh
Signature:

Description:

Function sech
Signature:

Description:

b such sin(b) = a.
If ahasthevalue? orif al [-1, 1], then returns 2.

acos: Real a® Real

Returns the arc cosine of a measured in radians, which is defined as the
value b such cos(b) = a.

If ahasthevalue? orif al [-1, 1], then returns ?.

asec: Real a® Real

Returns the arc secant of a measured in radians, which is defined as the
value b such sec(b) = a.

If aisundefined (?) or if |a|] <1, then returns ?.

acotan : Real a® Real

Returns the arc cotangent of a measured in radians, which is defined as the
value b such cotan(b) = a.

If aisundefined (?), then returns ?.

sinh : Real a® Real
Returns the hyperbolic sine of a measured in radians.
If a hasthe value ?, then returns 2.

cosh : Real a® Real

Returns the hyperbolic cosine of a measured in radians, which is defined as
cosh(x) = (e*+e™) /2.

If a hasthe value ?, then returns 2.

tanh : Real a® Real

Returns the hyperbolic tangent of a measured in radians, which is defined
assinh(a) / cosh(a).

If a has the value?, then returns ?.

sech : Real a® Real

Returns the hyperbolic secant of a measured in radians, which is defined
as

1/ cosh(a)

If a hasthe value ?, then returns 2.

54778

CD++

User's Guide

Function cosech
Signature:

Description:

Function atanh
Signature:

Description:

Function asinh
Signature:

Description:

Function acosh
Signature:

Description:

Function asech
Signature:

Description:

Function acosech
Signature:

Description:

Function acotanh

cosech : Real a® Real
Returns the hyperbolic cosecant of a measured in radians.
If a hasthe value ?, then returns ?.

atanh : Real a® Real

Returns the hyperbolic arc tangent of a measured in radians, which is
defined as the value b such tanh(b) = a.

If a has the value 2, or if its absolute value is greater than 1 (i.e, al [-1,
1]), then returns ?.

asinh : Real a® Real

Returns the hyperbolic arc sine of a measured in radians, which is defined
asthe value b such sinh(b) = a.

If a hasthe value ?, then returns 2.

acosh : Real a® Real

Returns the hyperbolic arc cosine of a measured in radians, which is
defined as the value b such cosh(b) = a.

If a hasthevalue ? or islessthan 1, then returns ?.

asech : Real a® Real

Returns the hyperbolic arc secant of a measured in radians, which is
defined as the value b such sech(b) = a.

If aisundefined, then return 2. If it is zero, then returns the constant INF.

acosech : Real a® Real

Returns the hyperbolic arc cosec of a measured in radians, which is defined
asthe value b such cosech(b) = a.

If aisundefined, then returns ?. If it is zero, then returns the constant |NF.

Signature: acotanh : Real a® Real
Description: Returns the hyperbolic arc cotangent of a measured in radians, which is
defined as the value b such cotanh(b) = a.
If aisundefined, then returns 2. If is 1 then returns the constant INF.
Function hip
Signature: hip : Real c1 x Real c2® Real
Description: Calculates the hypotenuse of the triangle composed by the side c1 and c2.
If c1 or c2 are undefined or negatives, then returns 2.
832322 Functions to cal culate Roots, Powers and Logarithms.
Function sgrt

55/78

CD++ User's Guide
Signature: sgrt: Real a® Real
Description: Returns the square root of a.
If aisundefined or negative, then returns ?.
Examples: sgrt(4) =2
sort(2) = 1.41421
sgrt(0) =0
sort(-2) = ?
sart(?) =72
Note: sgrt(x) is equivalent to root(x, 2) "X
Function exp
Signature: exp : Real x® Real
Description: Returns the value of €.
If x is undefined, then return ?.
Examples: exp(?) =7
exp(-2) = 0.135335
exp(1l) = 2.71828
exp(0) =1
Function In
Signature: In: Real a® Real
Description: Returns the natural logarithm of a.
If aisundefined or isless or equal than zero, then returns ?.
Examples: In(-2) =7
In(0) =7
In(1)=0
In(?)=7?
Note: In(X) isequivalenttologn(x, €) " X
Function log
Signature: log: Real a® Real
Description: Returns the logarithm in base 10 of a.
If aisundefined or less or equal to zero, then returns ?.
Examples: log(3) =0.477121
log(-2) =?
log(?) =7
log(0) =7
Note: log(x) isequivalent to logn(x, 10) " x

Function logn
Signature:

Description:

Notes:

Function power
Signature:

Description:

Function root

logn : Real ax Real n® Real

Returns the logarithm in base n of the value a.

If a or n are undefined, negatives or zero, then returns ?.
logn(x, €) isequivalent to In(x) "X

logn(x, 10) is equivalent to log(x) X

power : Real ax Real b® Real
Returns a°.
If a or b are undefined or b is not an integer, then returns 2.

56/ 78

CD++

User's Guide

Signature:
Description:

Examples:

Note:

root : Real ax Real n® Real

Returns the n—root of a.

If a or n are undefined, then returns ?. Also, returns this value if a is
negative or nis zero.

root(27,3)=3

root(8, 2) =3

root(4,2) =2

root(2,) =7

root(3, 0.5) =9

root(-2,2) =7

root(0, 4) =0

root(1,3) =1

root(4, 3) = 1.5874

root(x, 2) is equivaent to sqrt(x) "X

8.3.2.3.2.3 Functions to calculate GCD, LCM and the Rest of the Numeric Division

Function LCM

Signature:
Description:

Function GCD

Signature:
Description:

Function remainder

Signature:
Description:

Examples:

lcm : Real ax Real b® Real

Returns the Less Common Multiplier between a and b.
If a or b are undefined or non—integers, then returns ?.
The value returned is aways integer.

gcd : Real ax Real b® Real

Calculates the Greater Common Divisor betweeen a and b.
If a or b are undefined or non—integers, then returns ?.
The value returned is always integer.

remainder : Real ax Real b® Real

Calculates the remaindert of the division between a and b. The returned
valueis:a—n* b, wherenisthe quotient a/b rounded as an integer.
If a or b are undefined, then returns 2.

remainder(12, 3) =0

remainder(14, 3) = 2

remainder(4,2) =0

remainder(0,y) =0 "yl ?

remainder(x, 0) = x X

remainder(1.25, 0.3) = 0.05

remainder(1.25, 0.25) = 0

remainder(?, 3) =?

remainder(5, ?) =?

8.3.2.3.3 Functions to Convert Real Values to Integers Values

This section presents functions available to convert real values to integers using the rounding and
truncation techniques as detailed.

Function round
Signature:

round : Real a® Real

57178

CD++ User's Guide
Description: Rounds the value a to the nearest integer.
If aisundefined ?, then returns ?.
Examples: round(4) =4
round(?) = ?

Function trunc

Signature:
Description:

Examples:

Function truncUpper

Signature:
Description:

Examples:

Function fractional

Signature:
Description:

Examples:

8.3.2.3.4 Functions

Function abs

Signature:
Description:

Examples:

Function sign

Signature:
Description:

round(4.1) =4
round(4.7) =5
round(-3.6) =4

trunc: Real X® Real

Returns the greater integer number less or equal than x.
If x isundefined, then returns 2.

trunc(4) = 4

trunc(?) = ?

trunc(4.1) =4

trunc(4.7) = 4

truncUpper: Real x® Real

Returns the smallest integer number greater or equal than x.
If xisundefined, then returns ?.

truncUpper(4) = 4

truncUpper(?) =?

truncUpper(4.1) =5

truncUpper(4.7) =5

fractional : Real a® Real

Returns the fractional part of a, including the sign.
If aisundefined then returns 2.

fractional(4.15) = 0.15

fractional(?) = ?

fractional (-3.6) = -0.6

to manipulate the Sign of numerical values

abs: Real a® Real

Returns the absolute value of a.
If aisundefined then returns 2.
abs(4.15) = 4.15

abs(?) =7

abs(-3.6) = 3.6

abs(0)=0

sign: Real a® Real

Returns the sign of a in the following form:
If a> 0thenreturns 1.

If a< 0then returns—1.

If a= 0 then returnsO.

If a=?thenreturns?.

58/78

CD++ User's Guide

Function randomSgn
See the section 8.3.2.3.8.

8.3.2.3.5 Functions to manipulate Prime numbers

This functions are used to test for primality. Although they are available, they are quite
complex and can require alot of time to solve.

Function isPrime

See the section 8.3.2.3.1.
Function nextPrime
Signature: nextPrime: Rea r ® Real
Description: Returns the next prime number greater thanr.

If r is undefined then returns ?.
If an overflow occur when calculating the next prime number, the constant

INF isreturned.
Function nth_Prime
Signature: nth_Prime: Real n® Real
Description: Returns the n" prime number, considering as the first prime number the
value 2.

If nisundefined or non—integer then returns ?.
If an overflow occur when calculating the next prime number, the constant
INF is returned.

8.3.2.3.6 Functions to calculate Minimum and Maximums

Function min
Signature: min : Real ax Real b® Real
Description: Return the minimum between a and b.
If aor b are undefined then returns 2.
Function max
Signature: max : Real ax Real b® Real
Description: Returns the maximum between a and b.

If a or b are undefined then returns ?.

8.3.2.3.7 Conditional Functions

The functions described in this section return a real value that depends on the evaluation of a
specified logical condition.

Function if
Signature: if : Bool cx Redl t x Real f® Real
Description: If the condition c is evaluated to TRUE, then returns the evaluation of t,

else returns the evaluation of f.
The values of t and f can even come from the evaluation of any expression
that returns areal value, including another if sentence.

59/78

CD++

User's Guide

Function ifu

Signature:
Description:

Examples:

If you wish to return the value 1.5 when the natural logarithm of the cell
(O, 0) is zero or negative, or 2 in another case. In this case, it will be
written:
if In((0,0))=00r(0,0)<0,15,2)
If you wants to return the value of the cells (1, 1) + (2, 2) when the cell (0,
0) isn't zero; or the square root of (3, 3) in another case, it will be written:
if ((0,0)!=0,(1,1)+(2,2),sort(3, 3))
It can also be used for the treatment of a numeric overflow. For example, if
the factorial of the cell (0, 1) produces an overflows, then return -1, else
return the obtained result. In this case, it will be written:
if (fact((O, 1)) = INF, -1, fact((0, 1)))

ifu:Bool cxReal t x Real f x Rea u® Real
If the condition c is evaluated to TRUE, then returns the evaluation of t. If
it evaluates to FALSE, returns the evaluation of f. Else (i.e. is undefined),
returns the evaluation of u.
If you wish to return the value of the cell (0, 0) if its value is distinct than
zero and undefined, 1 if the value of the cell is 0, and p if the cell has the
undefined value. In this case, it will be invoked:

ifu((0,0)!'=0,(0,0),1,PI)

8.3.2.3.8 Probabilistic Functions

Function randomSgn

Signature:
Description:

Function random

Signature:
Description:

Note:

Function chi

Signature:
Description:

Function beta

Signature:
Description:

Function exponential

Signature:
Description:

randomSign : ® Real
Randomly returns a numerical value that represents a sign (+1 or —1), with
equal probability for both values.

random : ® Real

Returns a random real value pertaining to the interval (0, 1), with uniform
distribution.

random is equivalent to uniform(0,1).

chi : Real df ® Real

Returns a random real number with Chi-Squared distribution with df
degree of freedom.

If df is undefined, negative or zero, then returns ?.

beta: Real ax Real b® Real

Returns a random real number with Beta distribution, with parameters a
and b.

If a or b are undefined or lessthan 10°%, then returns 2.

exponential : Real av® Real

Returns a random real number with Exponential distribution, with average
av.

If av is undefined or negative, then returns ?.

60/ 78

CD++ User’'s Guide
Function f

Signature: f : Real dfn x Real dfd ® Real

Description: Returns a random real number with F distribution, with dfn degree of

Function gamma
Signature:

Description:

Function normal
Signature:

Description:

Function uniform
Signature:

Description:

Note:

Function binomial
Signature:

Description:

Function poisson
Signature:

Description:

Function randint
Signature:

Description:

Note:

freedom for de numerator, and dfd for the denominator.
If dfn or dfd are undefined, negatives or zero, then return 2.

gamma: Real ax Real b® Real

Returns a random real number with Gamma distribution with parameters
(a b).

If a or b are undefined, negatives or zero, then returns ?.

normal : Real mx Real s ® Real

Returns a random real number with Normal distribution (m s), where mis
the average, and s isthe standard error.

If mor s areundefined, or s isnegative, returns ?.

uniform : Real ax Real b® Real

Returns a random real number with uniform distribution, pertaining to the
interval (a, b).

If aor b areundefined, or a > b, then returns ?.

uniform(0, 1) is equivalent to the function random.

binomial : Real nx Real p® Real

Returns a random number with Binomial distribution, where n is the
number of attempts, and p is the success probability of an event.

If n or p are undefined, n is not integer or negative, or p not pertain to the
interval [0, 1], then return ?.

The returned number is always an integer.

poisson : Real Nn® Real

Return arandom number with Poisson distribution, with average n.
If nisundefined or negative, then returns ?.

The returned number is always an integer.

randint : Real n® Real

Returns an integer random number contained in the interval [0, n], with
uniform distribution.

If nisundefined, then returns ?.

randint(n) is equivalent to round(uniform(0, n))

61/78

CD++

User's Guide

8.3.2.3.9 Functions to calculate Factorials and Combinatorial

Function fact

Signature:
Description:

Examples:

Function comb
Signature:

Description:

fact : Real a® Real

Returns the factoria of a.

If ais undefined, negative or non—integer, then return 2.

If an overflow occur when calculating the next prime number, the constant
INF isreturned.

fact(3) =6

fact(0) =1

fact(5) = 120

fact(13) = 1.93205e+09

fact(43) = INF

comb : Real ax Real b® Real
6
2
If a or b are undefined, negatives or zero, or non-integers, then returns ?.
Thisvalueisalso returned if a<b.

If an overflow occur when calculating the next prime number, the constant
INF is returned.

Returns the combinatory %
e

8.3.2.4 Functions for the Cells and his Neighborhood

This section details the functions that allow to count the quantity of cells belonging to the
neighborhood whose state has certain value, as aso the function cellPos that allows to project an
element of the tuplathat referencesto the cell.

Function stateCount

Signature:
Description:

Function trueCount

Signature:
Description:

Function fal seCount

Signature:
Description:

Function undefCount

Signature:
Description:

stateCount : Real a® Real
Returns the quantity of neighbors of the cell whose stateis equal to a.

trueCount : ® Real

Returns the quantity of neighbors of the cell whose stateis 1.

This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

falseCount : ® Real

Returns the quantity of neighbors of the cell whose state is 0.

This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

undefCount : ® Real

Returns the quantity of neighbors of the cell whose state is undefined (?).
This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

62/78

CD++ User's Guide

Function cellPos

Signature: cellPos: Real i ® Real

Description: Returns the i™ position inside the tupla that references to the cell. That isto
say, giventhecel (Xo,X1,...,Xn), then cellPos(i) = x;.
If the value of i isnot integer, then it will be automatically truncated.
If i T [0, n+1), where n is the dimension of the model, it will produce an
error that will abort the simulation.
The value returned always will be an integer.

Examples: Giventhecdl (4, 3, 10, 2):
cellPos(0) = 4
cellPos(3.99) = cellPos(3) = 2
cellPos(1.5) = cellPos(1) = 3
cellPos(—1) y cellPos(4) will generate an error.

8.3.2.5 Functions to Get the Simulation Time

Function Time
Signature: time: ® Real
Description: Returns the time of the simulation at the moment in that the rule this being
evaluated, expressed in milliseconds.

8.3.2.6 Functions to Convert Values between different units

8.3.2.6.1 Functions to Convert Degrees to Radians

Function radToDeg
Signature: radToDeg: Real r ® Real
Description: Convertsthe valuer from radians to degrees.
If r isundefined then returns ?.

Function degToRad
Signature: degToRad : Real r ® Real
Description: Convertsthe valuer from degreesto radians.
If r isundefined then returns ?.

8.3.2.6.2 Functions to Convert Rectangular to Polar Coordinates

Function rectToPolar_r
Signature: rectToPolar_r : Real xx Real y® Real

Description: Converts the Cartesian coodinate (X, y) to the polar form (r, g), and returns
r.
If x or y are undefined then return ?.

Function rectToPolar_angle

Signature: rectToPolar_angle: Real xx Real y® Real
Description: Convertsthe Cartesian coordinate (X, y) to the polar form (r, g), and returns
g.

If x or y are undefined then return 2.

63/78

CD++ User's Guide

Function polar ToRect_x

Signature: polarToRect_x : Real r x Red q® Real
Description: Convertsthe polar coordinate (r, g) to the Cartesian form (x, y), and returns
X

If r or gareundefined, or r isnegative, then returns ?.

Function polar ToRect_y

Signature: polarToRect_y: Rea r x Red q® Real
Description: Convertsthe polar coordinate (r, g) to the Cartesian form (x, y), and returns
y.

If r or gareundefined, or r is negative, then returns ?.

8.3.2.6.3 Functions to Covert Temperatures between different units

Function CtoF
Signature: CtoF : Real ® Real
Description: Converts avaue expressed in Centigrade degrees to Fahrenheit degrees.
If the value is undefined then returns ?.

Function CtoK
Signature: CtoK : Red ® Real
Description: Converts avaue expressed in Centigrade degrees to Kelvin degrees.
If the value is undefined then returns ?.

Function KtoC
Signature: KtoC : Real ® Real
Description: Convertsavaue expressed in Kelvin degrees to Centigrade degrees.
If the value is undefined then returns ?.

Function KtoF
Signature: KtoF : Real ® Real
Description: Converts avaue expressed in Kelvin degrees to Fahrenheit degrees.
If the value is undefined then returns ?.
Function FtoC
Signature: FtoC : Real ® Real
Description: Converts avalue expressed in Fahrenheit degrees to Centigrade degrees.
If the value is undefined then returns ?.

Function FtoK
Signature: FtoK : Real ® Real
Description: Converts avaue expressed in Fahrenheit degrees to Kelvin degrees.
If the value is undefined then returns ?.

64/78

CD++

User's Guide

8.3.2.7 Functions to manipulate the Values on the Input and Output Ports

Function portValue

Signature:
Description:

Function send

Signature:
Description:

portValue: String p® Real

Returns the last value arrived through the input port p of the cell of the cell
being evaluated. This function will only be available for PortinTransition
rules (see section 9.3) . Other uses will generate an error.

If no message has arrived through port p before portValue is evaluated, an
undefined value (?) will be returned. Otherwise, the last value received
through the port will be returned.

When the string “thisPort” is used as the port name, the value received
through the port associated with the current PortinTransition will be
returned. For example:

The following model has two different PortinTransitions

Port | nTransition: portA@ell (0, 0) functi onA
Port I nTransition: portB@ell (1,1) functi onB
[functionA]

rule: 10 100 { portVal ue(portA) > 10 }
rule: 0 100 {t}

[functionB]

rule: 10 100 { portVal ue(portB) > 10 }
rule: 0 100 {t}

Figure 59 : Example of use of the function portValue

If we wanted to avoid repeating the same transition twice, we could either
give the two ports the same name or use thisPort as shown next:

Port | nTransi tion: portA@ell (0, 0) functi onA
Port I nTransition: portB@ell (1, 1) functi onA
[functionA]

rule: 10 100 { portVal ue(thisPort) > 10 }
rule: 0 100 {t}

Figure 60 : Example of use of the function portValue with thisPort

Section 9.3 shows an example where the portInTransition clause is used.
send : Stringp x Real x® 0

Sends the value x through the output port p.

If the output port p has not been defined, an error will be raised and the

simulation will be aborted. This function is usually used to send values to
other DEV S models.

65/78

CD++ User's Guide

send always returns 0. This makes it possible to include the function send
in the result section of arule without modifying the actual results.

{ (0,0) + send(port1, 15* log(10)) } 100{ (0,0) > 10}

Note: Send is a function of the language that can be used in any
expression, as for example, in the definition of a condition. However, this
is not recommended because for every condition that is evaluated that
includes the function send, a value will be sent. Instead, send should be
used in the expression for the delay or the value of the cell.

8.3.3 Predefined Constants

The following constants frequently used in the domains of the physics and the chemistry are
available.

Constant Pi

Returns 3.14159265358979323846, which represent the value of p, the relation between the
circumference and the radius of the circle.

Constant e
Returns 2.7182818284590452353, which represent the value of the base of the natural
logarithms.

Constant INF

This constant represents to the infinite value, although in fact it returns the maximum value
valid for a Double number (in processors Intel 80x86, this number is 1.79769 x 10°®).
Note that if, for example, we make x + INF — INF, where x is any real value, we will get 0 as
aresult, because the operator + is associative to left, for that will be solved:

(X + INF) —INF = INF = INF = 0.
Note: When being generated a numeric overflows taken place by any operation, it is returned
INF or —INF. For example: power(12333333, 78134577) = INF.

Constant electron_mass
Returns the mass of an electron, which is 9.1093898 x 10 grams.

Constant proton_mass
Returns the mass of a proton, which is 1.6726231 x 10* grams.

Constant neutron_mass
Returns the mass of a neutron, which is 1.6749286 x 10 2* grams.

Constant Catalan
¥
Returns the Catalan’'s constant, which is defined as g (-)*.(2“+1)2, that is

k=0
approximately 0.9159655941772.

Constant Rydberg
Returns the Rydberg’ s constant, which is defined as 10.973.731,534 / m.

66/ 78

CD++ User's Guide

Constant grav
Returns the gravitational constant, defined as 6,67259 x 10 m*/ (kg .)

Constant bohr_radius
Returns the Bohr’ s radius, defined as 0,529177249 x 10°° m.

Constant bohr_magneton
Returns the value of the Bohr’s magneton, defined as 9,2740154 x 10 joule/ tesla.

Constant Boltzmann
Returns the value of the Boltzmann's constant, defined as 1,380658 x 102 joule/ °K.

Constant accel
Returns the standard acceleration constant, defined as 9,80665 m / sec.

Constant light
Returns the constant that represents the light speed in a vacuum, defined as 299.792.458 m /
SEC.

Constant electron_charge
Returns the value of the electron charge, defined as 1,60217733 x 10 coulomb.

Constant Planck
Returns the Planck’ s constant, defined as 6,6260755 x 10 joule . sec.

Constant Avogadro
Returns the Avogadro’s number, defined as 6,0221367 x 10°° mols.

Constant amu
Returns the Atomic Mass Unit, defined as 1,6605402 x 10" kg.
Constant pem

Returns the ratio between the proton and electron mass, defined as 1836,152701.

Constant ideal_gas
Returns the constant of the ideal gas, defined as 22,41410 litres/ mols.

Constant Faraday
Returns the Faraday’ s constant, defined as 96485,309 coulomb / mol.

Constant Stefan_boltzmann
Returns the Stefan-Boltzmann’s constant, defined as 5,67051 x 10 Watt / (m?. °K*)

Constant golden

1++/5

Returns the Golden Ratio, defined as T

Constant euler_gamma
Returns the value of the Euler’'s Gamma, defined as 0.5772156649015.

67/78

CD++ User's Guide

8.4 Techniques to Avoid the Repetition of Rules

This section describes different techniques that allow to avoid repeating rules. This helps to make
models more readable.

8.4.1 Clause Else

When the clause portInTransition is used (see section 9.3), it is possible to use the clause else to
give an dternative rule in case that none of the rules evaluatesto true.

Figure 61 shows a short example where the Else clause is used. The default local transition for the
cells in this model is default_rule. In addition, cell (13,13) defines a specia funcion to be used
when an external event arrives through port In. If none of the conditions for the rules that make this
functionsis satisfied, then the else clause sets default_rule as the function to be evaluated.

[denoModel]
type: cel

link: in in@enoMdel (13, 13)
l ocal Transition: default_rule
portlnTransition: in@enoMdel (13, 13) anot her _rul e

[defaul t _rul e]
rul e:

rul e:
[anot her _rul e]

rule: 1 1000 { portVal ue(thisPort) = 0 }

el se: default_rule

Figure 61: Example of the Else clause

The Else clause can point to any valid transition function. Care must be taken to avoid circular
references, asin the example shown next.

[anot her _rul el]

rule: 1 1000 { portVal ue(thisPort) = 0 }
rule: 1.5 1000 { (0,0) =51}

rule: 3 1500 { (1,1) + (0,0) >= 1}

el se: another_rul e2

[anot her _rul e2]
rule: 1 1000 { (0,0) + portValue(thisPort) > 3}
el se: another _rul el

Figure 62: A circular reference produced by a bad use of the clause Else

CD++ will detect the special case shown in Figure 63, where the else clause references the same
function being defined.

68/ 78

CD++ User's Guide

[anot her _rul e]

rul e:

rul e:

el se: another _rule

Figure 63: Exampleof acircular reference detected by the simulator

8.4.2 Preprocessor — Using Macros

CD++ has a preprocessor that will expand macros. If macros are not used, the preprocessor can be
disabled using the command line argument —b to speed up model parsing.

Macros are usualy defined in separate files that are included in the main .ma file be means of the
preprocessor #include directive, which is of the form

#include(fileName)

where fileName is the name of the file that contains the definition of the macros. Thisfile should be
in the same directory where the main .mafileis.

More than one #include directive is allowed in the main .ma file, but no included files can have
themselves the #include directive.

To define amacro, the directives #BeginM acr o and #EndM acr o are used.

A macro definition has the form:

#Begi nMacr o(macr oNane)
...definition of the macro...

#EndMacr o

Figure 64 : Definition of amacro

Macros can contain any valid text in any number of lines. The only restriction that applies is that
they can not be used in the same file they are defined.

To expand a macro, the #Macro directive should be used in the place were the macro shoudl be
expanded. A #macro directiveis of the form

#Macro(macroName)

Anincluded file can contain any number of macro definitions. Any text in these files that is outside
the macro definitionsisignored. If arequired macro is not found, an error will be reported.

An #include directive can be placed at any line of the .ma file, as long as the macros therein
defined are used after the #include.

A macro can not make use of another macro.

69/78

CD++ User's Guide

Within a.mafile, the preprocessor allows comments. Comments begin with a% . All text between
the % and the end of thelineisignored.

% Here begins the rules
Rule : 1 100 { truecount > 1 or (0,0,1) = 2 } % Val i dat e t he exi stence
% of anot her individual.

Figure 65: A .mafile with comments

Section 9.5 shows a model where macros are used.

For special considerations regarding files created by the preprocessor, please see Appendix B.

70/ 78

CD++ User's Guide

9 Appendix B — Examples

9.1 The* Life Game”

The Life Game was presented in Scientific American by the well known mathematician
Martin Gardner. In this game, living cells will live or die. The rulesfor life evolution are as
follows:

An active cell will remain in this state if it has two or three active neighbors.
Aninactive cell will passto active state if it has two active neighbors exactly.
In any other case, the cell will die

The implementation of this model in CD++ isasfollows:

[top]
conponents : life

[life]

type : cell

width : 20

hei ght : 20
delay : transport
border : w apped

nei ghbors : life(-1,-1) life(-1,0) life(-1,1)
nei ghbors : life(0,-1) life(0,0) life(O,1)
nei ghbors : life(l,-1) life(1,0) life(1,1)
initialvalue : 0

initialrowalue : 1 00010001111000000000
initialrowalue : 2 00110111100010111100
initialrowalue : 3 00110000011110000010
initialrowalue : 4 00101111000111100011

initialrowalue : 10 01111000111100011110
initialrowalue : 11 00010001111000000000
localtransition : life-rule

[life-rule]

rule : 1 100 { (0,0)
rule : 1 100 { (0,0)
rule : 0 100 { t }

1 and (truecount = 3 or truecount = 4) }
0 and truecount = 2 }

Figure 66 : Implementation of the Game of Life

9.2 A bouncing object

The following is the specification of a model that represents an object in movement that bounces
against the borders of a room. This example is ideal to illustrate the use of a non toroidal cellular
automata, where the cells of the border have different behavior to the rest of the cells.

For the representation of the problem, 5 different values are used for the states of each cdll, these
values are:

71/78

CD++

User's Guide

0 = represents an empty cell.

1 = represents the object moving toward the south east.
2 = represents the object moving toward the north east.
3 = represents the object moving toward the south west.
4 = represents the object moving toward the north west.

The specification of the model is:

[top]
conponents : rebound

[rebound]

type : cell

width : 20

hei ght : 15

delay : transport

defaul tDel ayTime : 100
border : now apped

nei ghbors : rebound(-1,-1) rebound(-1, 1)
nei ghbors : r ebound(0, 0)

nei ghbors : rebound(1,-1) rebound(1, 1)
initialvalue : 0

initialrowalue : 13 00000000000000000010

localtransition : nove-rule

zone : cornerUL-rule { (0,0) }

zone : cornerUR-rule { (0,19) }

zone : cornerDL-rule { (14,0) }

zone : cornerDR-rule { (14,19) }

zone : top-rule { (0,1)..(0,18) }
zone : bottomrule { (14,1)..(14,18) }
zone : left-rule { (1,0)..(13,0) }
zone : right-rule { (1,19)..(13,19) }

[move-rul €]

rule : 1100 { (-1,-1) =1}
rule : 2 100 { (1,-1) =2}
rule : 3100 { (-1,1) =3}
rule : 4 100 { (1,1) =4}
rule : 0 100 { t }
[top-rul e]
rule : 3100 { (1,1) =4}
rule : 1 100 { (1,-1) =2}
{t}

rule : 0 100

[bottom rul e]
rule : 4 100 { (-1,1)
rule : 2100 { (-1,-1) =1}
rule : 0 100 { t }

[left-rule]

rule : 1100 { (-1,1) =3}
rule : 2 100 { (1,1) = 4}
rule : 0 100 { t }

[right-rule]

rule : 3100 { (-1,-1) =1}
rule : 4 100 { (1,-1) =2}
rule : 0 100 { t }

[corner UL-rul e]

rule : 1 100 { (1,1) 4}

72/78

CD++ User's Guide

rule : 0 100 { t }

[corner UR-rul e]
rule : 3 100 { (1,-1)
rule : 0 100 { t }

2}

[cornerDL-rul e]
rule : 2 100 { (-1,1) = 3}
rule : 0 100 { t }

[corner UR-rul e]
rule : 4 100 { (-1,-1) =1}
rule : 0 100 { t }

Figure 67: Implementation of the Rebound of an Object

9.3 Classification of raw materials

The aim of this example is to show the use of specia behavior that can be given to a cell when an
external event arrives through an input port. We have a model that represents the packing and
classification of certain raw material that contains 30% of carbon approximately. The model is
made of a machine that loads 100 grams fractions of that substance in a carrying band. One a
fraction reaches the end of the band, it is processed by a packager that takes these fractions until a
kilogram is obtained. Then, the packed substance is classified. If each packet contains 30 £ 1 % of
carbon, it is classified as of first quality; otherwise, it will be of second quality.

The model uses the atomic model Generator that generates values (in this case always the value 1)
each x seconds (where x has and Exponentia distribution with average 3). These values are passed
to the carry band, represented by a cellular mode. At the end of the band, another cellular model
makes the packaging and selection.

15
| GFNR |—>| I—P p- Quality
Carrv Band p o

Packing & Quality
Classification

Figure 68: Coupling structurefor the Classification of Substances

The following is the specification of the model:

[top]

conponents : genSubstances@zener at or queue packi ng
out : outFirstQuality outSecondQuality

link : out @enSunstances i n@ueue

link : out @ueue i n@acki ng

link : outl@acking outFirstQuality

link : out2@acking outSecondQuality

73/78

CD++

User's Guide

[genSubst ances]
distribution : exponenti al
mean : 3

initial : 1

increment : O

[queue]
type : cell
width : 6
height : 1

delay : transport

defaul tDel ayTinme : 1

border : now apped

nei ghbors : queue(0, -1) queue(0,0) queue(O0, 1)
initialvalue : 0

in: in

out : out

link : in in@ueue(0,0)

link : out @ueue(0,5) out

localtransition : queue-rule
portlnTransition : in@ueue(0,0) setSubstance

[queue-rul €]

rule : 0 1{ (0,0) '=0 and (0,1) =0 }

rule : { (0,-1) } 1{ (0,00 =0 and (0,-1) !'= 0 and not isUndefined((O, -
1)) }

rule : 0 3000 { (0,0) !'= 0 and isUndefined((0,1)) }

rule : { (0,0) } 1{t}

[set Subst ance]
rule : { 30 + normal (0,2) } 1000 { t }

[packi ng]

type : cell

width : 2

height : 2

delay : transport

defaul tDel ayTime : 1000

border : now apped

nei ghbors : packing(-1,-1) packing(-1,0) packing(-1,1)
nei ghbors : packing(0,-1) packing(0,0) packing(O0,1)
nei ghbors : packing(1,-1) packing(1,0) packing(1,1)
in: in

out : outl out2

initialvalue : 0

initialrowalue : 0 00

initialrowalue : 1 00

link : in in@packing(0,0)

link : in in@packing(1,0)

link : out @packing(0,1) outl

link : out@packing(1l,1) out2

|l ocaltransition : packing-rule

portlnTransition : in@acking(0,0) add-rule
portlnTransition : in@acking(l,0) incQuantity-rule

[packi ng-rul e]
rule : 0 1000 { isUndefined((1,0)) and isUndefined((0,-1)) and (0,0) = 10
}
rule : 0 1000 { isUndefined((-1,0)) and isUndefined((0,-1)) and (1,0) =
10 }
rule : { (0,-1) / (1,-1) } 1000 { isUndefined((-1,0)) and
i sUndefined((0,1))

and (1,-1) = 10 and abs((0,-1) / (1,-1) - 30) <=
1}

74178

CD++ User's Guide

rule : { (-1,-1) / (0,-1) } 1000 { isUndefined((1,0)) and
i sUndefined((0, 1))

1}
rule : { (0,0) } 1000 { t }

[add- rul €]

rule : { portValue(thisPort) + (0,0) } 1000 { portVal ue(thisPort) !'= 0 }
rule : { (0,0) } 1000 { t }

[incQuantity-rule]

rule : { 1 + (0,0) } 1000 { portVal ue(thisPort) !'= 0 }

rule : { (0,0) } 1000 { t }

and (0,-1) = 10 and abs((-1,-1) / (0,-1) - 30) >

Figure 69: Implementation of the Model to Classify Substances

The cellular model queue that represents the carry band makes use of the portinTranstition
clause. Asit was mentioned earlier, this clause is used to set the rule that will be evaluated when an
external event is received by the cell through the specified port. This clause is then used again in
the definition of the model Packing set the behavior of the cells upon the reception of a raw

material from the carry band.

94 Life Game-3D

The next example is an adaptation of the Game of the Life to athree dimensional space.

Figure 70 shows the model definition and Figure 71 lists the contents of file “3d-life.val” that

containstheinitia values for the cell.

[top]
conponents : 3d-life

[3d-1ife]

type : cell

dim: (7,7,3)

delay : transport

defaul tDel ayTime : 100

border : w apped

nei ghbors : 3d-life(-1,-1,-1) 3d-life(-1,0,-1) 3d-life(-1,1,-1)
nei ghbors : 3d-1ife(0,-1,-1) 3d-l1ife(0,0,-1) 3d-life(0,1,-1)
nei ghbors : 3d-life(1,-1,-1) 3d-life(1,0,-1) 3d-life(1,1,-1)
nei ghbors : 3d-life(-1,-1,0) 3d-life(-1,0,0) 3d-life(-1,1,0)
nei ghbors : 3d-1ife(0,-1,0) 3d-1ife(0,0,0) 3d-1ife(0,1,0)
nei ghbors : 3d-life(1,-1,0) 3d-life(1,0,0) 3d-life(1,1,0)
nei ghbors : 3d-life(-1,-1,1) 3d-life(-1,0,1) 3d-life(-1,1,1)
nei ghbors : 3d-1ife(0,-1,1) 3d-1ife(0,0,1) 3d-1ife(0,1,1)
nei ghbors : 3d-life(1,-1,1) 3d-life(1,0,1) 3d-life(1,1,1)
initialvalue : 0

initial CellsValue : 3d-life.val

localtransition : 3d-life-rule

[3d-1ife-rule]
rule : 1 100 { (0,0,0)
rule : 1 100 { (0,0,0)
rule : 0 100 { t }

1 and (truecount = 8 or truecount = 10) }
0 and truecount >= 10 }

Figure 70: Implementation of the Game of Life—3D

75/78

CD++ User's Guide
(0,0,0) =1 (2,4,1) =1 (5,1,2) =1
(0,0,2) =1 (2,4,2) =1 (5,2,0) =1
(1,0,0) =1 (2,5,0) =1 (5,2,2) =1
(1,0,1) =1 (2,6,1) =1 (5,3,0) =1
(1,1,1) =1 (3,2,1) =1 (5,3,1) =1
(1,2,0) =1 (3,5,1) =1 (5, & by =l
(1,2,2) =1 (3,5,2) =1 (5,5 2) =il
(1,3,2) =1 (3,6,1) =1 (5,6,0) =1
(1,4,2) =1 (3,6,2) =1 (6,0,0) =1
(1,500 =1 (4,1,2) =1 (6,1,1) =1
(1,5,1) =1 (4,2,0) =1 (6,1,2) =1
(1,6,0) =1 (4,2,1) =1 (6,3,0) =1
(1,6,1) =1 (4,4,1) =1 (6,3,2) =1
(2,1,2) =1 (4,5,0) =1 (6,4,2) =1
(2,1,0) =1 (4,5,2) =1 (6,5,1) =1
(2,3,1) =1 (4,6,0) =1 (6,6,0) =1
(2,3,2) =1 (4,6,2) =1 (6,6,2) =1
Figure 71: Initial valuesfor the cells of the Game of Life— 3D
9.5 Use of Macros

The following example shows how macros can be used to write a new version of the Game of the
Life for a4 dimensional space. Macros can be defined in external files that are included in the main
.mafile. More than one macro definition is may be included per file, but no macro can make use of
an existing macro. A macro is defined between the #BeginMacro and a #EndMacro directives. All
other text is ignored. The next figures show the contents of the four files that are used to

completely define the new model.

#i ncl ude(life.inc)
#i nclude(life-1.inc)

[top]
conponents : life
[life]

type : cell

dim: (2,10, 3,4)

delay : transport

defaul tDel ayTime : 100
border : w apped

nei ghbors : life(-1,-1,0,0) life(-1,0,0,0) life(-1,1,0,0)
nei ghbors : life(0,-8,0,0) life(0,-1,0,0) 1ife(0,0,0,0) 1life(0,1,0,0)
nei ghbors : life(1,-1,0,0) 1life(1,0,0,0) Ilife(1,1,0,0)
initialvalue : 0

initialCellsValue : life.val

localtransition : life-rule

[life-rule]
% Conment: Here starts the definition of rules

rule : 1 100 { #macro(Heat) or #macro(Rain) }

rule : 0 100 { (0,0,0,0) = ? OR (0,0,0,0) = 2}
#macro(rul el) % Anot her conment: A macro is invoked

rule : 1 100 { (0,0,0,0) = (1,0,0,0) AND (0,0,0,0) > 1}

#macro(rul e2)

Figure 72: Implementation of the Game of Lifewith 4 dimensions and using macros

76/78

CD++

User's Guide

(0,0,0,0) = ?
(1,0,0,0) = 25
(0,0,1,0) = 21
(0,1,2,2) = 28

(1, 4, 1,2) = 17
(1, 3, 2,1) = 15.44

Figure 73: Filelifeval that containstheinitial valuesfor the Gameof Lifein 4D

This is a conment: The nmacro Rul e3 assigns the value 0 if the cell’s val ue
is 3, and 4 if the cell’s value is negative.

#Begi nMacr o(r ul e3)

rule : 0 100 { (0,0,0,0)
rule : 4 100 { (0,0,0,0)
#EndMacr o

N
o w
o

#Begi nMacr o(r ul el)
rule : 0 100 { (0,0,0,0)
#EndMacr o

+

(1,0,0,0) + (1,1,0,0) + (0,-8,0,0) = 11 }

#Begi nMacr o(Heat)
(0,0,0,0) > 30
#EndMacr o

Figure 74: Filelifeinc that contains some macrosused in the Game of Life 4D

#Begi nMacr o(Rul e2)

rule : 0 100 { (0,0,0,0) = 7 }
rule : { (0,0,0,0) + 2} 100 { t }
#EndMacr o

#Begi nMacr o(Rai n)
(0,-8,0,0) > 25
#EndMacr o

Figure 75: Filelife-l.incthat containsthe remaining macrosfor the Game of Life 4D

77178

CD++ User's Guide

10 Appendix C —The preprocessor and temporary files.

When the preprocessor is used to resolve macros (by default the preprocessor is enabled), it will
create a temporary file for the model with all macros expanded and all the comments erased. This
temporary file is then passed to the simulator for its interpretation. If the use of the preprocessor
with the parameter -b is disabled and macros are used, the model will not be processed correctly.

The name of the temporary file is the value returned by the instruction tmpnam of the GCC. The
directory where the temporary files are located will be selected according to the following criteria:

1. When CD++ is compiled, the name of directory defined by P_tmpdir <stdio.h> will be used,
unlessthisistheroot directory.

In Linux this variable usually has the value: “/TMP”, while in the version of the GCC 2.8.1
for Windows-32 hits, this variable references to the root directory of the disk unit that isin
use.

2. If P_tmpdir points to the root directory, then the name defined by the environment variable
TEMP will be used.

3. If no TEMP variable is defined, then the value of the environment variable TMP will be
used.

4. Finaly, if the TMP is neither defined, the current directory will be used.

78/78

