
CD++

(Parallel version)

User’s Guide

Gabriel A. Wainer

Dept. of Systems and Computer Engineering
Carleton University

Ottawa, Canada

Alejandro Troccoli

Daniel A. Rodriguez, Amir Barylko, Jorge Beyoglonian

Departamento de Computación

Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires

Argentina

2001

CD++ User’s Guide

2 / 78

Contents

1 INSTALLATION ..4

1.1 SYSTEM REQUIREMENTS ..4
1.2 MPI ...5
1.3 CD++ ..6

2 STARTING THE SIMULATOR ...8

2.1 WORKSTATION MODE ...8

3 MODEL DEFINITION...12

3.1 STRUCTURE OF .MA FILE ..12
3.1.1 Coupled Models ...12
3.1.2 Atomic models ..13
3.1.3 Cell DEVS models ..14

4 CODING NEW ATOMIC MODELS..18

4.1 DEFINING THE STATE OF A MODEL ...18
4.2 DEFINING A NEW ATOMIC MODEL ..19
4.3 DEFINING THE OUTPUT VALUES ...22
4.4 EXAMPLE. A QUEUE MODEL. ...23

5 SUPPORTING FILES ..28

5.1 DEFINING INITIAL CELL VALUES USING A .VAL FILE...28
5.2 DEFINING INITIAL CELL VALUES USING A .MAP FILE ..28
5.3 EXTERNAL EVENTS FILE...29
5.4 PARTITION FILE..29

6 OUTPUT FILES..31

6.1 OUTPUT EVENTS ..31
6.2 FORMAT OF THE LOG FILE ...31
6.3 PARTITION DEBUG INFO ..33
6.4 OUTPUT GENERATED BY THE PARSER DEBUG MODE...34
6.5 RULE EVALUATION DEBUGGING ..35

7 UTILITY PROGRAMS..37

7.1 DRAWLOG ...37
7.1.1 Bidimensional cellular models ...38
7.1.2 Three dimensional models..39
7.1.3 Cellular models of more than 3 dimensions...40

7.2 PARLOG ...41
7.3 LOGBUFFER ...41
7.4 RANDOM INITIAL STATES – MAKERAND...42
7.5 CONVERTING .VAL FILES TO MAP OF VALUES – TOMAP ...43

8 APENDIX A - LOCAL TRANSITION FUNCTIONS FOR CELLULAR MODELS.45

8.1 A GRAMMAR FOR WRITING THE RULES ..45
8.2 PRECEDENCE ORDER AND ASSOCIATIVITY OF OPERATORS ...47
8.3 FUNCTIONS AND CONSTANTS ALLOWED BY THE LANGUAGE ...47

8.3.1 Boolean Values ..47
8.3.2 Functions and Operations on Real Numbers ...50
8.3.3 Predefined Constants ...66

8.4 TECHNIQUES TO AVOID THE REPETITION OF RULES ..68
8.4.1 Clause Else...68
8.4.2 Preprocessor – Using Macros..69

CD++ User’s Guide

3 / 78

9 APPENDIX B – EXAMPLES ..71

9.1 THE “ LIFE GAME” ..71
9.2 A BOUNCING OBJECT ...71
9.3 CLASSIFICATION OF RAW MATERIALS ..73
9.4 LIFE GAME – 3D..75
9.5 USE OF MACROS ..76

10 APPENDIX C – THE PREPROCESSOR AND TEMPORARY FILES..78

CD++ User’s Guide

4 / 78

CD++
CD++ is a tool for the simulation of Parallel DEVS and Parallel Cell-DEVS models. It runs either
in standalone (1 machine) or in parallel mode over a network of machines. This is CD++ User’s
Guide. A complete understanding of the Parallel DEVS and Cell-DEVS models is assumed. Please,
refer to the CD++ scientific report if necessary.

1 Installation

CD++ was developed to run in UNIX and Windows NT environments that support the MPI library.
It has been successfully tested in clusters of Linux machines running on Pentium processors. It
supports both, parallel and standalone simulation.

The standalone version can also be compiled to run under Windows systems.

The CD++ distribution includes the following utilities:

• Drawlog: draws the evolution of a cellular model.
• Parlog: Counts the number of (*,t) messages received by each LP during each simulation

cycle.
• Logbuffer: required by drawlog and parlog when parallel simulation is used. Sorts the log

messages that are sent to standard output to ensure they are processed in the correct order.
• ToMap: creates the initial state cell map file from a .ma file.
• MakeRand: generates a random initial state cell map file.

1.1 System requirements

The latest version of CD++ is distributed as a .tar.gz file and to install and compile CD++ the
following utilities will be required:

Compiling for UNIX / Linux

• makedepend: current version released with X11R6 (part of X-windows software)
• GNU Make makefile utility (part of GNU software)
• g++: the GNU C++ compiler and accompanying libc, version 2.7.0 or later (part of GNU

software)
• an implementation of MPI (e.g. MPICH) (for parallel simulation)
• GNU bison
• GNU flex

Compiling for Windows

To compile CD++ in Windows the CYGWIN tools are required.

• Cygwin: latest version available from http:\\www.cygwin.com. When downloading Cygwin,
select the packages that are listed in Compiling for UNIX / Linux. You will need to get
makedepend also (it is not included in the standard Cygwin distribution)

CD++ User’s Guide

5 / 78

1.2 MPI

For parallel simulation, an implementation of MPI is required. If MPI is already installed in your
system, find out if its includes and lib directories have been already added to the corresponding
environment variables. Otherwise, take note of these directories because they will be required later
on.

If MPI is not installed on your system, then it is recommended you install MPICH version 1.2.0,
which can be downloaded from http://www.mcs.anl.gov/home/lusk/mpich/index.html. You
can then install MPICH in a shared location (special permissions will be required) or in your home
directory. Basic installation instructions will be provided.

The installation instructions here presented are based on personal experience installing in on Linux
machines. If in doubt, please, check the mpich installation instructions found in install.ps in the
/doc directory.

1. Uncompress the distribution files
gunzip -c mpich.tar.gz | tar xovf

2. Run
./configure

This script will try to set the optimum parameters for compilation on your system. If mpich
will be installed in a shared location, then run

./configure -prefix= /usr/local/mpich-1.2.0. (or your preferred location)

4. Compile mpich by running
make >& make.log

This might take several minutes to an hour, depending on your system.

5. Edit the util/machines/machines.LINUX file and set the list of available machines in
the cluster.

6. (Optional) Install mpich on a shared location

make install

Troubleshooting

If the default settings have not been changed, MPICH will use rsh to run the remote
programs. For rsh to work properly, please check

1. Machine names are properly resolved, either using a DNS or the /etc/hosts file.
2. The inet services must be enabled in all the machines.
3. If you want to be able to run rsh without being prompted for a password, you will have

to create a .rhosts file with the names of the machines in the cluster. The .rhost file must
not have any group permissions enabled. Run chmod 600 .rhosts.

4. If the filesystem is not shared between all of the machines in the cluster, then a copy of
CD++ and any model files will be required on each machine.

CD++ User’s Guide

6 / 78

1.3 CD++

To install CD++, gunzip and untar the distribution file. On most Linux machines the command

gunzip -c pcd-3.x.x.tar.gz | tar xovf

will just do this.

The following directory structure will be created

CD++
+--------------- warped

+---------------- TimeWarp
+---------------- NoTime
+---------------- Sequential
+---------------- common

+--------------- models
+---------------- net
+---------------- airport

You must then edit Makefile.common and set the desired compilation options:

1. Set the source code location. If running parallel simulation, you will also need to indicate the
location of the MPI include and lib files.

#CD++ Makefile.common

#===
#CD++ Directory Details
export MAINDIR=/USERDEFINEDPATH/CD++

#===
#MPI Directory Details
export MPIDIR=/USERDEFINEDPATH/mpich-1.2.0
export LDFLAGS +=-L$(MPIDIR)/lib/
export INCLUDES_CPP += -I$(MPIDIR)/include
#===

Figure 1: Makefile.common – Setting the source location

CD++ User’s Guide

7 / 78

2. Specify whether parallel or stand alone simulation will be used. For stand alone simulation, the
NoTime simulation kernel must be used. For parallel simulation, you can choose from the
TimeWarp and NoTime kernel. If not sure, the NoTime kernel is recommended.

#If running parallel simulation, uncomment the following lines
export DEFINES_CPP += -DMPI
export LIBMPI = -lmpich
#===

#===
#WARPED CONFIGURATION
#===
#Warped Directory Details
#For the TimeWarp kernel uncomment the following
#export DEFINES_CPP += -DKERNEL_TIMEWARP
#export TWDIR=$(MAINDIR)/warped/TimeWarp/src
#export PLIBS += -lTW -lm -lnsl $(LIBMPI)
#export TWLIB = libTW.a

#For the NoTimeKernel, uncomment the following
export DEFINES_CPP += -DKERNEL_NOTIME
export TWDIR=$(MAINDIR)/warped/NoTime/src
export PLIBS += -lNoTime -lm -lnsl $(LIBMPI)
export TWLIB = libNoTime.a
#===

Figure 2: Makefile.common – Choosing the Warped kernel

3. Decide which atomic models will be included by removing the necessary comments.

###
#MODELS
#Let's define here which models we would like to include in our distribution
#Basic models
EXAMPLESOBJS=queue.o main.o generat.o cpu.o transduc.o distri.o com.o linpack.o
register.o

#Uncomment these lines to include the airport models
#DEFINES_CPP += -DDEVS_AIRPORT
#INCLUDES_CPP += -I./models/airport
#LDFLAGS += -L./models/airport
#LIBS += -lairport

#Uncomment these lines to include the net models
#DEFINES_CPP += -DDEVS_NET
#INCLUDES_CPP += -I./models/net
#LDFLAGS += -L./models/net
#LIBS += -lnet
##

Figure 3: Makefile.common – Model selection

After you have edited Makefile.common, you are ready to build CD++. To build CD++ and all the
accompanying utilities, issue the following commands:

make depend
make

If you change any settings in Makefile.common you will need to rebuild CD++ again. To do this,

make clean
make

CD++ User’s Guide

8 / 78

2 Starting the simulator

Previous versions of CD++ provided two different startup modes: a server mode and a workstation
mode. When running in server mode, the program is started and opens a TCP port through which it
will receive a model’s specification. Instead, when the workstation startup is chosen, all settings are
read from files specified in the command line options.

CD++ currently supports the workstation mode only. The server mode option is being developed.

2.1 Workstation Mode

To run CD++, type

./mpirun –np n ./cd++ [-ehlmotdvbfrspqw]

here n indicates the number of machines that will be required. It is important this is the same
number of machines specified in the partition file or the simulation will not work.

Usage:

./cd++ [-ehlLmotdpPDvbfrsqw]
e: events file (default: none)
h: show this help
l: logs all messages to a log file (default: /dev/null)
L[I*@XYDS]: log modifiers (logs only the specified messages)
m: model file (default : model.ma)
o: output (default: /dev/null)
t: stop time (default: Infinity)
d: set tolerance used to compare real numbers
p: print extra info when the parsing occurs (only for cells models)
D: partition details file (default: /dev/null)
P: parallel partition file (will run parallel simulation)
v: evaluate debug mode (only for cells models)
b: bypass the preprocessor (macros are ignored)
f: flat debug mode (only for flat cells models)
r: debug cell rules mode (only for cells models)
s: show the virtual time when the simulation ends (on stderr)
q: use quantum to compute cell values
y: use dynamic quantum (strategy 1) to compute cells values
Y: use dynamic quantum (strategy 2) to compute cells values
w: sets the width and precision (with form xx-yy) to show numbers

Figure 4: CD++ command line options

The command line options allowed are:

–efilename: External events filename. If this parameter is omitted, the simulator will not use
external events. The format for external event files is described in section 5.3.

CD++ User’s Guide

9 / 78

–lfilename: Log filename. When this parameter is specified, all messages received by each
DEVS processor will be logged. If filename is omitted (only –l is specified) all log
activity will be sent to the standard output. But if a filename is given, one log file will be
created for each DEVS processor. The file filename will list all models and the name of
the corresponding logfiles. These file will be named filename.XXX where XXX is a
number. When this option is used and no addition log modifiers are defined, all received
messages are logged.

The log file format is described in the section 6.2.

–L[I*@XYDS]: allows to define which messages will be logged. This option is useful to
reduce the log overhead. The following messages are supported:

I : Initialisation messages
* : (*,t) Internal messages.
@: (@,t) Collect messages
X: (q,t) External messages
Y: (y,t) Output messages
D: (done,t) Done messages
S: All sent messages

When using drawlog, only Y messages are required. Use the –LY option to reduce
execution time.

–mfilename: Model filename. This parameter indicates the name of the file that contains the
model definition. If this parameter is omitted, the simulator will try to load the models
from the model.ma file.

-Pfilename: Partition definition filename. A partition file is used to specify the machine
where each atomic model will run on. Only the location of the atomic models needs to be
specified. CD++ will then determine where the coordinators should be placed.

This file is only required for parallel simulation. If standalone simulation is used, this
setting will be ignored.

The format for a partition file is described in section 5.4.

–ofilename: output filename. This parameter indicates the name of the file that will be used
to store the output generated by the simulator. If this parameter is omitted, the simulator
will not generate any output. If you wish to get the results on standard output, simply
write –o.

The format for the generated output is described in section 6.1.

–Dfilename: debug filename for partition debug information. When this option is used, one
file for each LP will be created. This file will list all the identification of all DEVS
processors running on it.

CD++ User’s Guide

10 / 78

–t: Sets the simulation finishing time. If this parameter is omitted, the simulator will stop
only when there are no more events (internal or external) to process. The format used to
set the time is HH:MM:SS:MS, where:

HH: hours

MM: minutes (0 to 59)

SS: seconds (0 to 59)

MS: thousandths of second (0 to 999)

–d: Defines the tolerance used to compare real numbers. The value passed with the –d
parameter will be used as the new tolerance value.
By default, the value used is 10–8.

–pfilename: Shows additional information when parsing a cell’s local transition rules. The
parameter must be accompanied with the name of the file that will be used to store the
detail. This mode is useful when a syntax error occurs on complex rules.
The format used to store the output is showed in the section 6.4.

–vfilename: Enables verbose evaluation of the local transition rules. For each rule that is
evaluated, the result of each function and operator will be showed. In addition, this mode
will cause complete evaluation of the rules, i.e. it doesn’t use rule optimization. The
parameter must be accompanied with the filename that will be used to store the
evaluation results.

The format of the output generated when this mode is enabled is described in section 6.5.

–b: Bypass the preprocessor. When this parameter is set, the macros will be ignored.

–r: Enables the rule checking mode. When this mode is enabled, the simulator checks for the
existence of multiple valid rules at runtime. If this condition is true, the simulation will be
aborted. This mode is available in standalone mode.

There are a few special cases to consider: if a stochastic model is used (i.e. a model that
uses random numbers generators) it might either happen that multiple rules are be valid or
that none of them is. In any case, the simulator will notify this situation to the user,
showing a warning message on standard output, but the simulation will not be aborted.
For the first case, the first valid rule will be considered. For the second case, the cell will
have an undefined value (?), and the delay time will be the default delay time specified
for the model.
If this parameter is not used when the simulator is invoked, the mode is disabled and only
will be considered the first valid rule.

–s: Show the simulation’s finishing time on stderr.

–qvalue: Sets the value for the quantum.

The value used as quantum must be declared next to the parameter–q, for example: to set
the quantum value as 0.01 the parameter must be –q0.001.

CD++ User’s Guide

11 / 78

If the quantum value is 0 or the parameter –q is not used, the use of the quantum will be
disabled, and the value returned by the local computing function will be directly the value
of the cell.

–w: Allows to set the wide and precision of the real values displayed on the outputs (log file,
external events file, evaluation results file, etc).
By default, the wide is 12 characters and the precision is of five digits. Thus, of the 12
characters of wide, 5 will be for the precision, 1 for the decimal point, and the rest will be
used for the integer part that will include a character for the sign if the value is negative.
To set new values for the wide and precision, the –w parameter must be used, followed of
the number of characters for the wide, a hyphen, and the number of characters for the
decimal part. For example to use a wide of 10 characters and 3 for the decimal digits, you
must write –w10–3.
Any numerical value that must be showed by the simulator will be formatted using these
values, and it will be rounded if necessary. Thus, if a cell has the value 7.0007 and the
parameter –w10–3 is declared on the invocation of the simulator, the value showed for
the cell on all outputs will be 7.001, but the internal value stored will not be affected.

CD++ User’s Guide

12 / 78

3 Model definition

The simulator requires a model to run. A model is defined using a file (usally a .ma file), which is a
plain text file which details the model components. This section will explain how the structure of
such .ma file.

3.1 Structure of .ma file

A model file is used to define coupled and Cell-DEVS models. Atomic models are added to the
tool at compile time, and if new atomic models need to be defined, they must be code as detailed in
section 4. A model file consists of a set of groups and definition clauses within the groups. A group
is identified by writing its name between square brackets. All lines following a group declaration
are taken to be parameters for that group and are of the form

Id : value

As an example, mygroup is defined below:

[mygroup]
mygroupparameter : value
mygroupparameter2 : value

Figure 5: Defining groups and group parameters

All model files must have a top group identifying the top level coupled model. A small model
example will be now shown, but Section 8 defines more complex models.

3.1.1 Coupled Models

A coupled model is defined in a group that has the model’s name. For a couple model, four
different parameters exist:

Components:

components : model_name1[@atomicclass1] [model_name2[@atomicclass2] ...

Lists the component models that make the coupled model. If this clause is not
specified, an error will occur. A coupled model might have atomic models or other
coupled model as components. For atomic components, an instance name and a class
name must be specified. This allows a coupled model to use more than one instance of
an atomic class. For coupled models, only the model name must be given. This model
name must be defined as another group in the same file.

Out:
out : portname1 portname2 ...

Enumerates the model’s output ports. This clause is optional because a model may not
have output ports.

CD++ User’s Guide

13 / 78

In:
in : portname1 portname2 ...

Enumerates the input ports. This clause is also optional because a couple model is not
required to have input ports.

Link :

link : source_port[@model] destination_port[@model]

Defines the links between the components and between the components and the
coupled model itself. If name of the model is omitted it is assumed that the port
belongs to the coupled model being defined.

A model definition is shown below.

[top]
components : transducer@Transducer generator@Generator Consumer
Out : out
Link : out@generator arrived@transducer
Link : out@generator in@Consumer
Link : out@Consumer solved@transducer
Link : out@transducer out

[Consumer]
components : queue@Queue processor@Processor
in : in
out : out
Link : in in@queue
Link : out@queue in@processor
Link : out@processor done@queue
Link : out@processor out

Figure 6 : Example for the definition of a DEVS coupled model

3.1.2 Atomic models

As it was mentioned before, atomic models must be coded. In addition, an atomic model might
have user defined parameters that must be specified within the .ma file. If this is the case, the
parameters are specified in a group with the model’s name (the model’s name as defined in the
components clause, not the atomic class name).

[model_name]
var_name1 : value1
.
.
.
var_namen : valuen

Figure 7: User defined values for atomic models

The parameter names are defined by the model’s author and must be documented. Each instance of
an atomic model can be configured independently of other instances of the same kind.

CD++ User’s Guide

14 / 78

The next example shows two instances of the atomic class Processor with different values for the
user defined parameters.

[top]
components : Queue@queue Processor1@processor Processor2@processor
.
.
.

[processor]
distribution : exponential
mean : 10

[processor2]
distribution : poisson
mean : 50

[queue]
preparation : 0:0:0:0

Figure 8: Example of setting parameters to DEVS atomic models

3.1.3 Cell DEVS models

Cell DEVS models are a special case of coupled models. Then, when defining a cellular model, all
the coupled model parameters are available. In addition there exist some parameters that are of
cellular models. These parameters define the dimensions of the cell space, the type delay, the
default initial values and the local transition rules.

These parameters are:

type : [CELL | FLAT]

Defines the abstract simulator to be used. If cell is specified, there will be one
DEVS processor for each cell. Instead, if flat is specified, one flat coordinator will
be used. CD++ currently supports the cell option only.

width : integer

Defines the width of the cellular space. As it is the case with height, the width
parameter is provided for backward compatibility and implies that a 2-dimensional
cellular space will be used. For an n-dimensional cell space the dim parameter
should be used. width and height can not be used together with dim. If such a
situation exists, an error will be reported.

height : integer

Defines the height of the cellular space model. The same restrictions that were
given for width apply. For 1 dimension models, height should be set to 1.

CD++ User’s Guide

15 / 78

dim : (x0, x1, ..., xn)

Defines the dimensions of the cellular space.
All the xi values must be integers.
Dim can not be used together with any of the width and height parameters.

The vector that defines the dimension of the cellular model must have two or more
elements. For an unidimensional cellular model, the following form should be
used: (x0, 1).

When referencing a cell, all references must satisfy:
 (y0, y1, ..., yn) 0 ≤ yi < xi ∀ i = 0, .., n

 with yi an integer value

In : Defines the input ports for a cellular model.

Out : Defines the output ports the cellular model.

Link : Defines the components coupling. For a coupled cell model, the components are
cells. To define the couplings, cell references must be used for the model name. A
cell reference is of the form:

CoupleCellName(x1,x2,...,xn)

Valid link definitions are of the form:

Link : outputPort inputPort@cellName (x1,x2,...,xn)
Link : outputPort@cellName (x1,x2,...,xn) inputPort
Link : outputPort@cellName (x1,x2,...,xn) inputPort@cellName (x1,x2,...,xn)

Border : [WRAPPED | NOWRAPPED]

Defines the type of border for the cellular space. By default, NOWRAPPED is
used. If a nonwrapped border is used, a reference to a cell outside the cellular space
will return the undefined value (?).

Delay : [TRANSPORT | INERTIAL]

Specifies the delay type used for all cells of the model. By default the value
TRANSPORT is assumed.

DefaultDelayTime : integer

Defines the default delay (in milliseconds) for inputs received from external DEVS
models. If a portInTransition is specified, then this parameter will be ignored for that
cell.

CD++ User’s Guide

16 / 78

Neighbors : cellName (x1,1, x2,1,...,xn,1)... cellName (x1,m, x2,m,...,xn.m)

Defines the neighborhood for all the cells of the model. Each cell (x1,i, x2,i,...,xn.i)
represents a displacement from the centre cell (0,0,...., 0)

A neighborhood can be defined with any valid list of cells and is not restricted to
adjacent cells.

It is possible to use more than one neighbors sentence to define the neighborhood.

Initialvalue : [Real | ?]

Defines the default initial value for each cell. The symbol ? represents the
undefined value. There are several ways of defining the initial values for each cell.
The parameter initialvalue has the least precedence. If another parameter defines a
new value for the cell, then that value will be used.

InitialRowValue : rowi value1...valuewidth

Defines the initial value for all the cells in row i.

Precondition:
0 ≤ rowi < Height (where Height is the second element of the dimension
defined with Dim, or the value defined with Height).
Can only be used for bidimensional models. For n-dimensional models the
initialCellsValue or initialMapValue parameters are preferred.

This clause is used for backward compatibility. All values are single digit values in
the set {?, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. The first digit will define the value for the first
cell in the row, the second for second cell and so on. No spaces are allowed
between digits.

InitialRow : rowi value1 ... valuewidth

Same as initialrowvalue, but values can now be any member of the set ℜℜ ∪ {?}.
Each value in the list must be separated by a blank space from the next one.

InitialCellsValue : fileName

Defines the filename for the file that contains a list of initial value for cells in the
model. Section 5.1 defines the format for these files. initialcellsvalue can be used
with any size of cellular models and will have more precedence that initialrow and
initialrowvalue.

CD++ User’s Guide

17 / 78

InitialMapValue : fileName

Defines the filename for the file that contains a map of values that will be used as
the initial state for a cellular model. Section 5.2 defines the format for these files.

LocalTransition : transitionFunctionName

Defines the name of the group that contains the rules for the default local
computing function.

PortInTransition : portName@ cellName (x1, x2,...,xn) transitionFunctionName

It allows to define an alternative local transition for external events. By default, if
this parameter is not used, when an external event is received by a cell its value
will be the future value of the cell with a delay as set by the defaultDelayTime
clause.

Section 9.3 illustrates the use of the portInTransition clause.

Zone : transitionFunctionName { range1[..rangen] }

A zone defines a region of the cellular space that will use a different local
computing function. A zone is defined giving as a set of single cells or cell ranges.
A single cell is defined as (x1,x2,...,xn), and a range as (x1,x2,...,xn)..(y1,y2,yn). All
cells and cell ranges must be separated by a blank space.

As an example,

zone : pothole { (10,10).. (13, 13) (1,3) }

tells CD++ that the local transition rule pothole will be used for the cells in the
range (10,10)..(13,13) and the single cell (1,3). The zone clause will override the
transition defined by the localtransition clause.

CD++ User’s Guide

18 / 78

4 Coding new atomic models

This section will describe how to code new atomic models into CD++. Knowledge of C++ is
required. Users not intending to code new models can skip this section.

A new atomic model is created as a new class that inherits from Atomic. To tell CD++ that a new
atomic definition has been added, the model must be registered in the
ParallelMainSimulator.registerNewAtomics() function. In addition, for an atomic model to support
the TimeWarp protocol, a model’s state has to be defined as a separate class that is derived from
AtomicState. The current state is available through the function getCurrentState() which returns a
pointer to the model state. States are managed by the Warped kernel, and are only valid through a
simulation cycle. There is no guarantee a pointer returned during a simulation cycle will still be
valid during the next one. In addition, the states are not created until the initFunction is called, so
no state initialization code should be placed in the class constructor.

4.1 Defining the state of a model

The state of a model is made of all those variables that can change during a simulation cycle. The
basic state variables required by an atomic model are defined in the AtomicState class. A user can
create a new class to define the state variables required by his model.

The AtomicState class declaration is shown below.

class AtomicState : public ModelState {
public:

enum State
{

active,
passive

} ;

State st;

AtomicState(){};
virtual ~AtomicState(){};

AtomicState& operator=(AtomicState& thisState); //Assignment
void copyState(BasicState *);
int getSize() const;

};

Figure 9: The AtomicState class.

To access the current state the function

ModelState* getCurrentState()

should be used. The pointer that is returned can be casted to the proper type.

An assignment operator and a copy constructor need to be provided for Warped to work properly.
In addition, the method getSize should be overridden to return the size of the class.

CD++

19 /

4.2

When creating a new atomic model, a new class derived from atomic has to be created. Atomic is
an abstract class that declares a model’s API and defines some service functions the user can use to

class Atomic : public Model
{
public:

// Destructor

protected:

virtual Model &initFunction() = 0;
virtual Model &externalFunction (const
virtual Model &externalFunction(const ExternalMessage &);
virtual Model &internalFunction(const InternalMessage &) = 0 ;

virtual Model &confluentFunction (const InternalMessage &, const MessageBag &);

virtual string className() const

//Kernel services

Vtime nextChange();
void lastChange(Vtime);

Model &holdIn(const AtomicState::State &, const VTime &) ;

Model &sendOutput(const VTime &time, const Port & port , Value value)
Model &passivate();

virtual ModelState* getCurrentState() const;

//State shortcuts
Model &state(const AtomicState::State &s)

const AtomicState::State &state() const
{return ((AtomicState *)getCurren

}; // class Atomic

10: The Atomic Class

services are functions that allow the model to tell the simulator the current state and duration.
These are:

 holdIn(state, VTime)

state for a period of V It
corresponds to the ta(s) function of the DEVS formalism.

 passivate()

external event is received.

CD++ User’s Guide

20 / 78

• sendOutput(VTime, port, BasicMsgValue*):

Sends an output message through the port. The time should be set to the current time. The
user can define any structure for the messages values, as described further on. The simulator
will delete the pointer received.

• sendOutput(VTime, port, Value):

This function is provided for backward compatibility. It send a real value through the given
port. Again, the time should be set to the current time. If only real values will be used, then
this function will do.

• nextChange():

Returns the remaining time for the next internal transition (sigma).

• lastChange():

Returns the time the model last changed, either because an external event was received or an
internal transition took place.

• state():

Returns the current model’s phase.

• getParameter(modelName, parameterName)

Returns the parameters the user defined in the .ma file. ModelName is the model’s instance
name, and parameterName is the name of the parameter to be returned. If the parameter has not
been specified, an empty string is returned.

The new class should override the following functions:

• virtual Model &initFunction()

This method is invoked by the simulator at the beginning the simulation and after the model
state has been initialized. All initialization should take place when this method is call. An
active model should usually set the time for the next transition using the holdIn function.

• virtual Model &externalFunction (const MessageBag &)
• virtual Model &externalFunction(const ExternalMessage &);

These methods are invoked when one or more external events arrive from a port of the model.
It corresponds to the δext function of the DEVS formalism. The simulator calls the first
function, the one that receives a message bag. By default, this function will iterate through all
the messages in the bag and call the second one. This is provided for backward compatibility.
If the modeler would like to have more control on the model’s behavior when multiple
simultaneous events are received, it is recommend the first function is overridden. If the
model’s behavior is simple enough for simultaneous events to be handled sequentially, then it
will be enough to redefine the second function.

CD++ User’s Guide

 / 78

class MessageBag {

public:

MessageBag(); //Default Constructor
~MessageBag();

MessageBag &add(const BasicPortMessage*);

bool portHasMsgs(const string& portName) const;

const MessageList& msgsOnPort(const string& portName) const;

int size() const

MessageBag& eraseAll();

const VTime& time() const;

};

Figure 11 : MessageBag class

• virtual Model &internalFunction(const InternalMessage &)

This method corresponds to the δint function of the DEVS formalism.

• virtual Model &outputFunction(const CollectMessage &)

This function is called before δint. It should send all the output event. Each output event is
sent using the function sendOutput defined below.

• virtual Model &confluentFunction (const InternalMessage &, const MessageBag &)

It corresponds to the δconf function of the DEVS formalism. By default, it is set to:

Model &Atomic::confluentFunction (const InternalMessage &intMsg, const
MessageBag &extMsgs)
{
//Default behavior for confluent function:
//Proceed with the internal transition and the with the external
internalFunction(intMsg);

//Set the elapsed time to 0
lastChange(intMsg.time());

//Call the external function
externalFunction(extMsgs);

return *this;

}

CD++ User’s Guide

 / 78

 virtual string className()

4.3

The user can define a new class for the output values. To define a new structure for output values, a
new class that derives from BasicMsgValue has to be created. A class for sending and receiving

There is only restriction that applies: no pointers can be defined as part of the class. This is because
message values are sent across a network when parallel simulation is used and pointers will be just

class BasicMsgValue
{

BasicMsgValue();
virtual ~BasicMsgValue();

rtual int valueSize() const;
virtual string asString() const;

BasicMsgValue(const BasicMsgValue&);

};

{
public:

RealMsgValue(const Value& val);

Valu
int valueSize() const;
string asString() const ;

RealMsgValue(const RealMsgValue&);
};

12: The BasicMsgValue and RealMsgValue classes

•

Returns the size of the class. It should be set to:

return sizeof(className);

 virtual string asString()

Returns a string that is used in the log file to log the value sent or received.

CD++ User’s Guide

23 / 78

• virtual BasicMsgValue * clone();

Returns a pointer to a new copy of the message value. The function that receives the pointer
will own it and afterwards delete it.

• BasicMsgValue(const BasicMsgValue&)

A copy constructor is required.

4.4 Example. A queue model.

A queue is a device of temporary storage that uses a FIFO (First In First Out) mechanism. Our
model of a queue will hold any type of user defined value. The queue will have three input ports
and one output port. Values to be stored will be received through the input port In and will later be
sent through the port Out. The input ports start-stop and next will serve to regulate the flow of
values through the output port. Figure 13 shows the structure of our model of a queue.

Figure 13: Structure of a Queue

Initially, the queue is empty. When the first value is received through the input port In, it will be
stored in the queue and forwarded through the output port Out after a time as defined by the user
parameter preparationTime. If a value is received and the queue is not empty, then it will be stored,
but it will not be forwarded immediately. Instead, it will be sent through the output port Out only
after a message is received through the port next.

A message received through the input port start-stop will temporarily disable the queue. If the
queue is disabled, it will only respond to new events received through the input port In. Any value
received will be stored, but no output will be ever sent until the queue is enabled again by sending
an event to the start-stop port.

After this brief description, we are ready to begin writing our model. First, we need to define a
class to store the state of the queue. The queue will have two state variables: a list of elements and
a boolean to store the enabled/disabled status. Figure 14 lists the Queue state class declaration and
definition.

Once the state class has been defined, we are ready to implement the model itself. The Queue class
declaration is shown in Figure 15.

QUEUE

OUT IN

NEXT

START - STOP

CD++ User’s Guide

24 / 78

class QueueState : public AtomicState {

public:

 typedef list<BasicMsgValue *> ElementList ;
 ElementList elements ;
 bool enabled;

 QueueState(){};
 virtual ~QueueState(){};

 QueueState& operator=(QueueState& thisState)
{
(AtomicState &)*this = (AtomicState &) thisState;

ElementList::const_iterator cursor;

for(cursor = thisState.elements.begin();
cursor != thisState.elements.end(); cursor++)

elements.push_back(cursor->clone());

 return *this;
}

 void copyState(QueueState *)
{ *this = *((QueueState *) rhs);}

 int getSize() const
{ return sizeof(QueueState);}

};

Figure 14 : QueueState class

The Queue model overloads the initialization methods, internal function, external transition and
output function. In addition, it shortcut functions to access the elements of the current state.

CD++ User’s Guide

25 / 78

class Queue : public Atomic
{
public:
Queue(const string &name = "Queue");
virtual string className() const { return "Queue" ;}

protected:
Model &initFunction();
Model &externalFunction(const MsgBag &);
Model &internalFunction(const InternalMessage &);
Model &outputFunction(const CollectMessage &);

ModelState* allocateState()
{ return new QueueState;}

private:
Port &in, &done, &out;

VTime preparationTime;

QueueState::ElementList& elements()
{ return ((QueueState*)getCurrentState())->elements; }

bool enabled() const
{ return ((QueueState*)getCurrentState())->enabled; }

void enabled (bool val)
{ ((QueueState*)getCurrentState())->enabled = val; }

}; // class Queue

Figure 15: The Queue class declaration

The initFunction has to set the initial state for the queue, as shown in Figure 16. The elements of
the list will be erased and the enabled will be set to true.

Model &Queue::initFunction()
{
 enabled(true);

 return *this;
}

Figure 16: initFunction for the Queue model

The externaFunction will be activated every time one or more events are received. For the queue
model, this function will have to insert into the queue all values received through port In, schedule
an output if a value is received through the port next and enabled or disable the queue if an event is
received through port start-stop, as detailed in Figure 17. It is important to notice that it is the
modeler’s responsibility to set which message will have the highest priority when more than one is
received. For our queue model, it can be seen from Figure 17 that the start-stop messages will
have higher precedence than the done and in messages.

CD++ User’s Guide

26 / 78

Model &Queue::externalFunction(const MsgBag & bag)
{

if (portHasMsgs(“start-stop”))
{

enabled (!enabled());
if (!enabled())

passivate();
}

if (enabled() && portHasMsgs(“done”))
{

elements().pop_front();
holdIn(AtomicState::active, preparationTime);

}

if (portHasMsgs(“in”)
{

MessageList::const_iterator cursor;
cursor = bag.msgOnPort(“in”).begin();

for (; cursor != bag.msgsOnPort(“in”).end() ; cursor++)
elements().push_back(cursor.value());

//If the queue was empty, schedule the next transition
if (enabled() && elements.size()==msgsOnPort(“in”).size())

holdIn(AtomicState::active, preparationTime);

}

}

Figure 17: External transition function for the queue model

The output function is called before an internal transition. In our queue model, the output function
should send the first value in the list through the output port. The internal transition function will
passivate the model which will wait for an external event to take place.

Model &Queue::outputFunction(const CollectMessage &msg)
{
 sendOutput(msg.time(), out, elements.front());
 return *this;
}

Model &Queue::internalFunction(const InternalMessage &)
{
 passivate();
 return *this;
}

Figure 18: Methods for the Output Function and the Internal Transition of the Queue

The sendOutput function will delete the pointer it receives, so all memory previously allocated to
store the queue values will be reclaimed.

CD++ User’s Guide

27 / 78

If we wanted to use the queue for a network model, the queue would store IP packets. Then an IP
packet class derived from BasicMsgValue should be defined.

Figure 19 lists the definition of the IPPacket class. The only restriction that needs to be placed in
classes derived from BasicMsgValue is that they do not contain any pointers.

class IPPacket : public BasicMsgValue
{
public:

char OriginIP[15];
char DestinationID[15];
int Port;
int SequenceNumber;
int PayloadSize;

IPPacket();
virtual ~IPPacket();

virtual int valueSize() const
{ return sizeof(IPPacket); }

virtual string asString() const;
virtual BasicMsgValue* clone() const;

IPPacket(const IPPacket&);

};

Figure 19: IP Packet Definition

CD++ User’s Guide

28 / 78

5 Supporting files

5.1 Defining initial cell values using a .val file

Within the definition of a cellular model, the InitialCellValue parameter defines a file name with
the initial values for the cells. This is a plain text file. Each line of the file defines a value for a
different cell. The format of this file is shown in Figure 20.

(x0,x1,...,xn) = value_1
...
(y0,y1,...,yn) = value_m

Figure 20 : Format of the file used to define the initial values of a cellular model

The extension .VAL is normally used for this kind of files. The file is processed in sequential
order, so if there are two values defined for the same cell, the latest one will be used.

The dimension of the tuple should match the dimensions of the cellular space.

For the definition of the initial values of a cellular model, a single file should be used, which can
not contain initial values for other cellular models.

It is not necessary to define an initial value for each cell. If no value is defined in this file, then the
value defined by the parameter InitialValue will be used.

Figure 21 shows a short fragment of a .val file for a cellular space of 4 dimensions.

(0,0,0,0) = ?
(1,0,0,0) = 25
(0,0,1,0) = –21
(0,1,2,2) = 28
(1, 4, 1,2) = 17
(1, 3, 2,1) = 15.44
(0,2,1,1) = –11.5
(1,1,1,1) = 12.33
(1,4,1,0) = 33
(1,4,0,1) = 0.14

Figure 21 : Example of a file for the definition of the initial values for a Cellular Model

5.2 Defining initial cell values using a .map file

If the InitialMapValue parameter is used, then the initial values for a cellular model are specified in
a .map file. This file contains a map of cell values, as shown in Figure 22.

CD++ User’s Guide

29 / 78

value_1
... ...
value_m

Figure 22 : .map file format

Each value of the .map file will be assigned to a cell starting with the origin cell (0,0...,0). For a
three-dimensional cellular model of size (2, 3, 2), the values will be assigned in the following
order:

(0,0,0) (0,0,1) (0,1,0), (0,1,1) (0,2,0) (0,2,1) ... (1,2,0) (1,2,1)

If there are not enough values in the file for all the cells in the model, the simulation will be
aborted. If instead there are more values than cells, the remaining values will be ignored.

The toMap tool creates a .map file from a .val file.

5.3 External events file

External events are defined in a plain text file with one event per line. Each line will be of the
format:

HH:MM:SS:MS PORT VALUE

where:
HH:MM:SS:MS is the time when the event will occur.
Port is the name of the port from which the event will arrive.
Value is the numerical value for the event. Can be a real number or the

undefined value (?).

Example:

00:00:10:00 in 1
00:00:15:00 done 1.5
00:00:30:00 in .271
00:00:31:00 in –4.5
00:00:33:10 inPort ?

Figure 23 : File with external events

5.4 Partition file

A partition file is required for parallel simulation. For each atomic model, the partition file defines
the machine that will host its associated simulator. For coupled models, CD++ will decide where
the coordinators will be running.

A partition file, usually referred as a .par file, has lines with the following format:

MachineNumber : modelName1 modelName2 cell(x,y) cell(x,y)..(x2, y2)

A line starts with a machine number (machine numbers start at 0) followed by a space, a colon and
a list of names separated by spaces. Different lines may start with the same machine number.

CD++ User’s Guide

30 / 78

The list of names following a machine number is the list of atomic instances that will be hosted by
that machine. For cellular models, a single cell may be specified or a range of cells may be given.
A cell range is described with name of the coupled cell model followed by the first cell in the
range, two dots, and the last cell in the range.

As an example, consider the following partial definition of a model:

[top]
components : superficie generadorCalor@Generator generadorFrio@Generator
link : out@generadorCalor inputCalor@superficie
link : out@generadorFrio inputFrio@superficie

[superficie]
type : cell
width : 100
height : 100
delay : transport
defaultDelayTime : 100
border : wrapped
neighbors : superficie(-1,-1) superficie(-1,0) superficie(-1,1)
neighbors : superficie(0,-1) superficie(0,0) superficie(0,1)
neighbors : superficie(1,-1) superficie(1,0) superficie(1,1)
initialvalue : 24
in : inputCalor inputFrio

Figure 24 : Partial definition of the heat diffusion model

If we wanted to run this model in a cluster of nine machines, then the following is a valid partition:

0 : generadorCalor generadorFrio
0 : superficie(0,0)..(32,32)
1 : superficie(0,33)..(32,65)
2 : superficie(0,66)..(32,99)
3 : superficie(33,0)..(65,32)
4 : superficie(33,33)..(65,65)
5 : superficie(33,66)..(65,99)
6 : superficie(66,0)..(99,32)
7 : superficie(66,33)..(99,65)
8 : superficie(66,66)..(99,99)

Figure 25 : Valid partition for the heat diffusion model over 9 machines

A valid partition must specify one and only one location for each atomic and each cell. If more than
one machine or no machine is specified for a model, then an error will be raised and the simulation
will be aborted.

CD++ User’s Guide

31 / 78

6 Output Files

6.1 Output events

If the command line option –o is given, all the output events generated by the simulator are written
to the specified file. There will be one event per line, and lines will have the following format:

HH:MM:SS:MS PORT VALUE

Following is a small example of an output file.

00:00:01:00 out 0.000
00:00:02:00 out 1.000
00:00:03:50 outPort ?
00:00:07:31 outPort 5.143

Figure 26 : Example of an Output file

6.2 Format of the Log File

A log file keeps a record of all the messages sent between DEVS processors. A log is created when
the –l command line argument is used. If no log modifiers are specified, all received messages are
logged. Otherwise, only those messages set by the log modifiers will be logged.

When a filename for the log is given, there will be one file per DEVS processor and one file with
the list of all the names of the files that have been created. This latter file will be named with the
name given after the –l parameter. All other files will be named with the name after the –l
parameter followed by the DEVS processor id.

Each line of the file shows the number of the LP that received the message, the message type, the
time of the event, the sender and the receiver. In addition, messages of type X or Y will include the
port through which the message was received and the value received. For messages of type D, the
remaining type for the next transition will be shown. A ‘…’ for this field will indicate infinity.

The numbers between brackets show the ID of the DEVS processor and are provided for debugging
purposes only.

As an example, the log files for the following model will be shown.

[top]
components : superficie generadorCalor@Generator generadorFrio@Generator
link : out@generadorCalor inputCalor@superficie
link : out@generadorFrio inputFrio@superficie

[superficie]
type : cell
width : 5
height : 5
...

Figure 27 : Partial definition of the heat diffusion model

CD++ User’s Guide

32 / 78

When running this model with the –lcalor.log parameter, the following are the contents of
calor.log.

[logfiles]
ParallelRoot : calor.log00
top : calor.log29
superficie : calor.log01
superficie(0,0) : calor.log02
superficie(0,1) : calor.log03
superficie(0,2) : calor.log04
superficie(0,3) : calor.log05
superficie(0,4) : calor.log06
superficie(1,0) : calor.log07
superficie(1,1) : calor.log08
superficie(1,2) : calor.log09
superficie(1,3) : calor.log10
superficie(1,4) : calor.log11
superficie(2,0) : calor.log12
superficie(2,1) : calor.log13
superficie(2,2) : calor.log14
superficie(2,3) : calor.log15
superficie(2,4) : calor.log16
superficie(3,0) : calor.log17
superficie(3,1) : calor.log18
superficie(3,2) : calor.log19
superficie(3,3) : calor.log20
superficie(3,4) : calor.log21
superficie(4,0) : calor.log22
superficie(4,1) : calor.log23
superficie(4,2) : calor.log24
superficie(4,3) : calor.log25
superficie(4,4) : calor.log26
generadorcalor : calor.log27
generadorfrio : calor.log28

Figure 28 : Calor.log

This is a list of the models and their corresponding files. If more than one file is created (as is the
case of coupled models with more than one coordinator), all of them are listed. The log messages
received by the coordinator superficie will be logged into the file calor.log01, which is shown next.

0 I / 00:00:00:000 / top(29) para superficie(01)
0 D / 00:00:00:000 / superficie(0,0)(02) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(0,1)(03) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(0,2)(04) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(0,3)(05) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(0,4)(06) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(1,0)(07) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(1,1)(08) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(1,2)(09) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(1,3)(10) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(1,4)(11) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(2,0)(12) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(2,1)(13) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(2,2)(14) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(2,3)(15) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(2,4)(16) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(3,0)(17) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(3,1)(18) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(3,2)(19) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(3,3)(20) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(3,4)(21) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(4,0)(22) / 00:00:00:000 para superficie(01)

CD++ User’s Guide

33 / 78

0 D / 00:00:00:000 / superficie(4,1)(23) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(4,2)(24) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(4,3)(25) / 00:00:00:000 para superficie(01)
0 D / 00:00:00:000 / superficie(4,4)(26) / 00:00:00:000 para superficie(01)
0 @ / 00:00:00:000 / top(29) para superficie(01)
0 Y / 00:00:00:000 / superficie(0,0)(02) / out / 24.00 para superficie(01)
0 D / 00:00:00:000 / superficie(0,0)(02) / 00:00:00:000 para superficie(01)
0 Y / 00:00:00:000 / superficie(0,1)(03) / out / 24.00 para superficie(01)
0 D / 00:00:00:000 / superficie(0,1)(03) / 00:00:00:000 para superficie(01)
0 Y / 00:00:00:000 / superficie(0,2)(04) / out / 24.00 para superficie(01)
0 D / 00:00:00:000 / superficie(0,2)(04) / 00:00:00:000 para superficie(01)
0 Y / 00:00:00:000 / superficie(0,3)(05) / out / 24.00 para superficie(01)
0 D / 00:00:00:000 / superficie(0,3)(05) / 00:00:00:000 para superficie(01)
0 Y / 00:00:00:000 / superficie(0,4)(06) / out / 24.00 para superficie(01)
0 D / 00:00:00:000 / superficie(0,4)(06) / 00:00:00:000 para superficie(01)
...
...
0 X / 00:00:00:000 / top(29) / inputcalor / 1.00 para superficie(01)
0 X / 00:00:00:000 / top(29) / inputfrio / 1.00 para superficie(01)
0 * / 00:00:00:000 / top(29) para superficie(01)

Figure 29 : Fragment of calor.log01

6.3 Partition Debug Info

The partition debug info file lists all the DEVS processors that are taking part of the simulation,
their IDs and they machine they are running in. This file is useful to were the coordinators for
coupled models are placed. One partition debug info file is created by each LP. The files will be
named with the text after the command line –D argument followed by the LP number.

Figure 31 shows a fragment of a partition debug file generated when running the model described
in Figure 27 with the partition shown next.

0 : generadorCalor generadorFrio
0 : superficie(0,0)..(2,4)
1 : superficie(3,0)..(4,4)

Figure 30 : Partition for the heat diffusion model of Figure 27

Model: ParallelRoot
Machines:

 Machine: 0 ProcId: 0 < master >

Model: top
Machines:

 Machine: 0 ProcId: 30 < master >

Model: superficie
Machines:

 Machine: 0 ProcId: 1 < master >
 Machine: 1 ProcId: 2 < local >

Model: superficie(0,0)
Machines:

 Machine: 0 ProcId: 3 < master >

...

Model: superficie(3,0)

CD++ User’s Guide

34 / 78

Machines:
 Machine: 1 ProcId: 18 < local > < master >

Model: superficie(3,1)
Machines:

 Machine: 1 ProcId: 19 < local > < master >

Model: superficie(3,2)
Machines:

 Machine: 1 ProcId: 20 < local > < master >

Setting up the logical process
Total objects: 31
Local objects: 11
Total machines: 2

About to create the LP
LP has been created. Now registering processors.
Registering processor superficie(2)
Registering processor superficie(3,0)(18)
Registering processor superficie(3,1)(19)
Registering processor superficie(3,2)(20)
Registering processor superficie(3,3)(21)
Registering processor superficie(3,4)(22)
Registering processor superficie(4,0)(23)
Registering processor superficie(4,1)(24)
Registering processor superficie(4,2)(25)
Registering processor superficie(4,3)(26)
Registering processor superficie(4,4)(27)

Current processors:
Processor Id: 2 Description: superficie
Model Id: 2 superficie(02)
Parent Id: 30

...

Processor Id: 27 Description: superficie(4,4)
Model Id: 27 superficie(4,4)(27)
Parent Id: 2

All objects have been registered!
Initializing Object superficie(2): OK
Initializing Object superficie(3,0)(18): OK
Initializing Object superficie(3,1)(19): OK
Initializing Object superficie(3,2)(20): OK
Initializing Object superficie(3,3)(21): OK
Initializing Object superficie(3,4)(22): OK
Initializing Object superficie(4,0)(23): OK
Initializing Object superficie(4,1)(24): OK
Initializing Object superficie(4,2)(25): OK
Initializing Object superficie(4,3)(26): OK
Initializing Object superficie(4,4)(27): OK
After Initialize....OK

Figure 31 : Partition debug information file calor.pardeb01 (LP 1)

6.4 Output generated by the Parser Debug Mode

When the simulator is invoked with the option –p, the debug mode for the parser is activated. In
debug mode, the parser will write the parse tree as it reads the rules. All tokens that are successfully

CD++ User’s Guide

35 / 78

processed are shown and if there is a syntax error, the place were the error was detected is
specified.

Figure 32 shows the output generated for the Game Life model as implemented in section 9.1.

********* BUFFER ********
 1 100 { (0,0) = 1 and (truecount = 3 or truecount = 4) } 1 100 { (0,0) = 0
and truecount = 3 } 0 100 { t } 0 100 { t }
Number 1 analyzed
Number 100 analyzed
Number 0 analyzed
Number 0 analyzed
OP_REL parsed (=)
Number 1 analyzed
AND parsed
COUNT parsed (truecount)
OP_REL parsed (=)
Number 3 analyzed
OR parsed
COUNT parsed (truecount)
OP_REL parsed (=)
Number 4 analyzed
Number 1 analyzed
Number 100 analyzed
Number 0 analyzed
Number 0 analyzed
OP_REL parsed (=)
Number 0 analyzed
AND parsed
COUNT parsed (truecount)
OP_REL parsed (=)
Number 3 analyzed
Number 0 analyzed
Number 100 analyzed
BOOL parsed (t)
Number 0 analyzed
Number 100 analyzed
BOOL parsed (t)

Figure 32 : Output generated in the Parser Debug Mode for the Game of Life

6.5 Rule evaluation debugging

Using the –v command line argument, a debug mode for cell rules evaluation is enabled. This will
cause the simulator to log all intermediate values for each rule as it is evaluated.

Figure 33 shows a fragment of the output generated for the Game of the Life model of section 9.1
Line numbers have been added to make the following explanations clear.

The first two lines indicate the beginning of a new evaluation. Line 2 begins the evaluation of the
first rule for the first cell. Each evaluated argument is listed with the partial result for the
expression. Line 2 shows the evaluation of the cell reference (0,0), which turned out to be 0. In line
3, the integer constant 1 is evaluated, which is later compared to 0, evaluating to 0 (false).
BinaryOp indicates that a binary operation is being performed. The operator name will be included
between brackets, as well as the value of each of the operands. Line 13 shows the final result for
the condition of the rule, which was false in this case.

CD++ User’s Guide

36 / 78

00 +---
--+
01 New Evaluation:
02 Evaluate: Cell Reference(0,0) = 0
03 Evaluate: Constant = 1
04 Evaluate: BinaryOp(0, 1) = (=) 0
05 Evaluate: CountNode(1) = 1
06 Evaluate: Constant = 3
07 Evaluate: BinaryOp(1, 3) = (=) 0
08 Evaluate: CountNode(1) = 1
09 Evaluate: Constant = 4
10 Evaluate: BinaryOp(1, 4) = (=) 0
11 Evaluate: BinaryOp(0, 0) = (or) 0
12 Evaluate: BinaryOp(0, 0) = (and) 0
13 Evaluate: Rule = False
14
15 Evaluate: Cell Reference(0,0) = 0
16 Evaluate: Constant = 0
17 Evaluate: BinaryOp(0, 0) = (=) 1
18 Evaluate: CountNode(1) = 1
19 Evaluate: Constant = 3
20 Evaluate: BinaryOp(1, 3) = (=) 0
21 Evaluate: BinaryOp(1, 0) = (and) 0
22 Evaluate: Rule = False
23
24 Evaluate: Constant = 1
25 Evaluate: Rule = True
26
27 Evaluate: Constant = 100
28 Evaluate: Constant = 0
29 +---
--+
30 ...
31 ...
32 ...
33 ...
34 +---
--+
35 New Evaluation:
36 Evaluate: Cell Reference(0,0) = 1
37 Evaluate: Constant = 1
38 Evaluate: BinaryOp(1, 1) = (=) 1
39 Evaluate: CountNode(1) = 4
40 Evaluate: Constant = 3
41 Evaluate: BinaryOp(4, 3) = (=) 0
42 Evaluate: CountNode(1) = 4
43 Evaluate: Constant = 4
44 Evaluate: BinaryOp(4, 4) = (=) 1
45 Evaluate: BinaryOp(0, 1) = (or) 1
46 Evaluate: BinaryOp(1, 1) = (and) 1
47 Evaluate: Rule = True
48
49 Evaluate: Constant = 100
50 Evaluate: Constant = 1
51 +---
--+
52 ...
53 ...
54 ...

Figure 33 : Fragment of the output generated by the debug mode for the Evaluation or Rules

CD++ User’s Guide

37 / 78

7 Utility programs

7.1 Drawlog

The DrawLog utility is used to view the state of a cellular model after each simulation cycle as the
simulation advances. Using the log as input, drawlog parses the Y messages to update the state of
each cell in the model. When a simulation cycle finishes, the state of the whole model is printed.

Drawlog can read the log from a file or from the standard input. Its command line parameters are
shown next:

drawlog –[?hmtclwp0]

where:
 ? Show this message
 h Show this message
 m Specify file containing the model (.ma)
 t Initial time
 c Specify the coupled model to draw
 l Log file containing the output generated by SIMU
 w Width (in characters) used to represent numeric values
 p Precision used to represent numeric values (in characters)
 0 Don't print the zero value

 f Only cell values on a specified slice in 3D models

Figure 34 : Help shown by DrawLog

–?: similar to –h.

–m: Specifies the filename that contains the definition of the models. This parameter
is required

–t: Starting time. Sets the time for the first state output. If not specified, 00:00:00:000
will be used.

–c: Name of the cellular model to represent. This parameter is obligatory required
because a .ma file may define more than one cellular model.

–l: Name of the log file. If this parameter is omitted, Drawlog will take the data of the
standard input.

–w: Allows to define the print width, in characters, for numeric values. This width will
include the decimal point and sign. For example, –w7 defines a fixed size for each
value of 7 positions. Small numbers will be padded with spaces.

By default, Drawlog uses a width of 10 characters. For correct results a width that
is bigger than the precision (defined with the parameter –p) + 3 is recommended.

–p: Defines the number of digits to be displayed after the decimal point. If a value of 0
is used, then all the real values will be truncated to integer values. This parameter
is generally used in combination with the option –w.

CD++ User’s Guide

38 / 78

As an example, consider using the command line arguments –w6 –p2. This will set
the

By default, DrawLog assumes 3 characters for the precision.

–0: When this option is specified, a value of 0 zero will no be shown.

-f: Draws a 3D model as a 2D model. Only the specified plane will be drawn. To
draw plane 0, -f0 should be used.

Figure 35 shows two different ways of starting drawlog. The first uses a log file as input. The
second one, instead, takes its input from the standard input.

drawlog –mlife.ma –clife –llife.log –w7 –p2 –0

or

pcd –mlife.ma –l- | drawlog –mlife.ma –clife -w7 –p2 -0

Figure 35 : Examples for the invocation to DrawLog

When parallel simulation is used, the standard input can not be directly used by drawlog because
log messages may arrive out of order. Therefore, it is necessary to sort the messages first. A utility
called logbuffer (described next) has been written for that purpose.

The output format of DrawLog will depend on the number of dimensions of the cellular model.

• Output for bidimensional cellular models.
• Output for three–dimensional cellular models.
• Output for cellular models with 4 or more dimensions.

7.1.1 Bidimensional cellular models

A 2 dimensions model will be displayed as a matrix of values. Figure 36 shows a fragment of the
output generated by DrawLog for a two-dimensional model of size (10, 10). The number width has
been set to 5 and the precision to 1.

CD++ User’s Guide

39 / 78

Line : 238 - Time: 00:00:00:000
 0 1 2 3 4 5 6 7 8 9
 +--+
 0| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 1| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 2| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 3| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 4| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 5| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 6| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 7| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 8| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 9| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 +--+

Line : 358 - Time: 00:00:01:000
 0 1 2 3 4 5 6 7 8 9
 +--+
 0| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 1| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 2| 24.0 24.0 35.8 24.0 24.0 24.0 24.0 24.0 -6.3 24.0|
 3| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 4| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 5| 24.0 24.0 24.0 24.0 24.0 39.5 24.0 24.0 24.0 24.0|
 6| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 7| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 8| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 -4.0 24.0|
 9| 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0|
 +--+

Figure 36 : Fragment of the output generated for a bidimensional cellular model

7.1.2 Three dimensional models

For three dimensional models, a matrix representation will be used. Each matrix is one plane of the
cell space. The first plane shown will correspond to (x,y,0), the second one to (x,y,1), and so on.

Figure 37 shows the output of Drawlog when used to draw a cellular space of size (5,5,4) with a
number width of 1, a precision of 0 and zero values not displayed.

Line : 247 - Time: 00:00:00:000
 01234 01234 01234 01234
 +-----+ +-----+ +-----+ +-----+
 0|1 | 0| | 0|1 | 0| |
 1|1 1 | 1|11 1| 1| 111| 1| 11|
 2| 1 | 2| 11| 2| 1 11| 2| 1|
 3| | 3| 1 | 3| 1| 3| 1|
 4| 1 1| 4| 1 1| 4| 1 1| 4| 1|
 +-----+ +-----+ +-----+ +-----+

Line : 557 - Time: 00:00:00:100
 01234 01234 01234 01234
 +-----+ +-----+ +-----+ +-----+
 0| | 0|11 11| 0|1 11| 0| 11|
 1| | 1| | 1|1 | 1| 1|
 2| | 2|1 1| 2|1 | 2| 11|
 3| 1 | 3| 11 | 3|1 11| 3|1 1|
 4| | 4| | 4| | 4| |
 +-----+ +-----+ +-----+ +-----+

CD++ User’s Guide

40 / 78

Line : 829 - Time: 00:00:00:200
 01234 01234 01234 01234
 +-----+ +-----+ +-----+ +-----+
 0| | 0| | 0|1 1| 0| |
 1| 1| 1| 1| 1| 11| 1| 1|
 2| | 2| | 2|1 1| 2| |
 3| | 3| | 3|1 1 | 3| |
 4| | 4| 1| 4|1 11| 4| 1|
 +-----+ +-----+ +-----+ +-----+

Figure 37 : Fragment of the output generated for a three–dimensional cellular model

7.1.3 Cellular models of more than 3 dimensions

For models of 4 or more dimensions, the matrix representation will not be used. Instead, the values
for each cell will be listed. The options defined with –p, -w and –0 will be ignored.

Figure 38 shows a fragment of the output generated by DrawLog for a model of size (2, 10, 3, 4).

Line : 506 - Time: 00:00:00:000
(0,0,0,0) = ?
(0,0,0,1) = 0
(0,0,0,2) = 9
(0,0,0,3) = 0
(0,0,1,0) = 21
...
...
(1,9,1,0) = 0
(1,9,1,1) = 4.333
(1,9,1,2) = 0
(1,9,1,3) = –2
(1,9,2,0) = 6
(1,9,2,1) = 0
(1,9,2,2) = 7
(1,9,2,3) = 0

Line : 789 - Time: 00:00:00:100
(0,0,0,0) = 0
(0,0,0,1) = 0
(0,0,0,2) = 13.33
(0,0,0,3) = 0
(0,0,1,0) = 5.75
...
...
(1,9,1,0) = 6.165
(1,9,1,1) = 2
(1,9,1,2) = 0
(1,9,1,3) = 1.14
(1,9,2,0) = 0
(1,9,2,1) = 0
(1,9,2,2) = 5.25
(1,9,2,3) = 0

Figure 38 : Fragment of the output generated for a model with dimension 4

CD++ User’s Guide

41 / 78

7.2 Parlog

Parlog is a utility used to asses the parallelism of a running model. It uses the model log as input
and counts the number of (*,t) messages received by each LP during a simulation cycle. After a
simulation cycle has been completed, a list with the number of messages received by each LP will
be printed.

Parlog reads the log from the standard input. LogBuffer should be used for correct results.

Usage:

PARLOG: An utility to determine the level of parallelism
usage: parlog -[?hmP]

where:
 ? Show this message
 h Show this message

P Partition file name

Figure 39 : Parlog command line options

–h : Displays help.

-? : Displays help.

-P: Specifies the partition file name. This paramter is required because parlog
needs to know how many LPs are being used.

Figure 40 shows the output generated by parlog with a model running in for machines.

Time/LP 0 1 2 3
00:00:00:000 629 626 626 626
00:00:10:000 5 0 2 3
00:00:11:000 12 3 12 14
00:00:12:000 31 7 32 35
00:00:13:000 60 13 62 66
00:00:14:000 99 21 102 107
00:00:15:000 148 31 152 158
00:00:16:000 207 43 212 219
00:00:17:000 276 57 282 290
00:00:18:000 351 73 358 367
00:00:19:000 428 91 436 446
00:00:20:000 509 131 495 486
00:00:21:000 543 192 531 522
00:00:22:000 575 254 563 554
00:00:23:000 603 317 591 582
00:00:24:000 625 376 614 606
00:00:25:000 627 450 625 626

Figure 40 : Parlog output for a 4 machines partition.

7.3 Logbuffer

Logbuffer is a utility that buffers log messages received through the standard input, sorts them
according to their time, and outputs them to the standard output. It should be used when running
drawlog or parlog piped with the simulator.

CD++ User’s Guide

42 / 78

To run logbuffer use,

logbuffer [-b]

-bn Sets the size of the buffer. The default size is 200.

Both drawlog and parlog require that, for correct results to be obtained, that log messages be
processed in the order determined by their timestamps. When parallel simulation is run and the log
is sent to the standard output, there is no guarantee that messages will be displayed in the same
order that they were generated. Therefore, a sorted buffer is needed.

Logbuffer has an internal buffer of a used defined size, which is always kept sorted. When the
simulation is started, this buffer is empty. Every new message that arrives is buffered, and no
output is sent till the buffer is full. Once it is full, every new message that arrives causes a new
message to be sent to the standard output. When the simulation finishes, all buffered messages are
sent.

Figure 41 : Logbuffer receives a message with timestamp 3 and then two messages with
timestamp 2. Logbuffer sorts and sent in the correct order.

Logbuffer can only guarantee correct results for misplaced messages that occur within a distance
smaller than the size of the buffer.

>./mpirun –np 4 ./pcd –mcalor.ma –Pcalor.par4 –t00:01:00:000 –l |
./logbuffer –b5000 | ./drawlog –mcalor.ma –csuperficie –w6-p2 > calor.drw

> ./mpirun –np 4 ./pcd –mcalor.ma –Pcalor.par4 –t00:01:00:000 –l |
./logbuffer –b5000 | ./parlog –Pcalor.par4 > calor.p

Figure 42 : Running pcd with logbuffer.

7.4 Random Initial States – MakeRand

MakeRand is a tool to create a .val file with a random initial state for a cellular model.

LOGBUFFER

(@,3) , (*,2) , (x,2) (*,2) , (x,2), (@,3)

CD++ User’s Guide

43 / 78

Usage:

makerand -[?hmcs]

where:
 ? Show this message
 h Show this message
 m Specify file containig the model (.ma)
 c Specify the Cell model within the .ma file
 s Specify the value set
 s0 = Use the values 0 & 1 (Uniform Distribution)
 s1-n = Use the value 1 for n cells & 0 for the rest
 s2-n = Makes random states for the Pinball Model
 s3-n = Random states for the Gas Dispersion Model

Figure 43 : MakeRand command line options

–?: similar to –h.

–m: Specifies the filename for the model definition file (.ma)

–c: Name of the cellular model. This parameter is required because the size of the
model needs to be known.

–s: Specifies the type of initial state to be created:

–s0: For each cell of the model, a value will be chosen randomly belonging to
the set {0, 1} with the same probability for each value.

–s1–n: Indicates that the model initially will have n cells with value 1
(distributed randomly according to an uniform distribution) and the rest of
the cells will have the value 0. If n is bigger to the quantity of cells of the
model, then an error will occur and the initial state will not be generated.
For example, if we have a 40x40 cellular and we want 75% of the cells
(1200 cells) to have an initial value of 1, and the remaining cells an initial
value of 0, then –s1–1200 should be used.

–s2–n: Generates a random initial state for the Pinball model. For this model a
value between 1 and 8 will be randomly generated and randomly place
inside the cellular space. In addition, n cells will be randomly chosen to
represent the walls. The rest of the them will have an initial value of 0.

–s3–n: Creates an initial state for the gas dispersion model with n particles.

The output will be created in a .val file with the same name as the model file.

7.5 Converting .VAL files to Map of Values – ToMap

The tool ToMap allows to creates a .map (section 5.2) file from a .val file (section 5.1).

CD++ User’s Guide

44 / 78

Usage:

toMap -[?hmci]

where:
 ? Show this message
 h Show this message
 m Specify file containig the model (.ma)
 c Specify the Cell model within the .ma file
 i Specify the input .VAL file

Figure 44 : Command line arguments for toMap

–?: same as –h. Shows the command line help.

–m: Specifies the filename (.ma file) with the model definition.

–c: Name of the cellular model.

–i: Specifies the name of the .val file that contains the list of values that it will be used
for the creation of the .map file.

ToMap uses all values in the .val file to create a map of values. If the .val file does not specify a
value for every cell, then the default value, as specified by the InitialValue parameter, will be used.

The output file will have the same name as the .ma file but the extension .map will be used instead.

CD++ User’s Guide

45 / 78

8 APENDIX A - Local transition functions for cellular models.

Local transition functions for cellular models are defined as groups in the .ma file. They are not
tied to a particular model, so they can be used for more than one cellular model at the same time. A
local transition is made of a set of rules of the form:

rule : result delay { condition }

A rule is composed of three elements: a condition, a delay and a result. To calculate the new value
for a cell’s state, the simulator takes each rule (in the order in that they were defined) and evaluates
the condition clause. If the condition evaluates to true, then the result and delay clause are
evaluated. The result will be the new cell state and will be sent as an output after the obtained
delay. Whether the previous sate values will be still sent as outputs or not will depend on the delay
type of the cells. Inertial delay cells will preempt any scheduled outputs. On the other hand,
transport delay cells will keep them.

Rules whose condition clause evaluates to false are skipped. If all the rules are evaluated without
one having a true condition, then the simulation will be aborted. If there is more than one rule with
a condition that evaluates to true, the first one will be the one that determines the new cell’s state. If
the delay clause of a cell evaluates to undefined, then the simulation will be automatically
cancelled.

8.1 A grammar for writing the rules

The BNF for the grammar used for the rules is shown in Figure 45. Words written in bold
lowercase represent terminals symbols, while those written in uppercase represent non terminals.

RULELIST = RULE
 | RULE RULELIST

RULE = RESULT RESULT { BOOLEXP }

RESULT = CONSTANT
 | { REALEXP }

BOOLEXP = BOOL
 | (BOOLEXP)
 | REALRELEXP
 | not BOOLEXP
 | BOOLEXP OP_BOOL BOOLEXP

OP_BOOL = and | or | xor | imp | eqv

REALRELEXP = REALEXP OP_REL REALEXP
 | COND_REAL_FUNC(REALEXP)

REALEXP = IDREF
 | (REALEXP)
 | REALEXP OPER REALEXP

IDREF = CELLREF
 | CONSTANT
 | FUNCTION
 | portValue(PORTNAME)
 | send(PORTNAME, REALEXP)
 | cellPos(REALEXP)

CD++ User’s Guide

46 / 78

CONSTANT = INT
 | REAL
 | CONSTFUNC
 | ?

FUNCTION = UNARY_FUNC(REALEXP)
 | WITHOUT_PARAM_FUNC
 | BINARY_FUNC(REALEXP, REALEXP)
 | if(BOOLEXP, REALEXP, REALEXP)
 | ifu(BOOLEXP, REALEXP, REALEXP, REALEXP)

CELLREF = (INT, INT REST_TUPLA

REST_TUPLA = , INT REST_TUPLA
 |)

BOOL = t | f | ?

OP_REL = != | = | > | < | >= | <=

OPER = + | - | * | /

INT = [SIGN] DIGIT {DIGIT}

REAL = INT | [SIGN] {DIGIT}.DIGIT {DIGIT}

SIGN = + | -

DIGIT = 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

PORTNAME = thisPort | STRING

STRING = LETTER {LETTER}

LETTER = a | b | c |...| z | A | B | C |...| Z

CONSTFUNC = pi | e | inf | grav | accel | light | planck | avogadro |
 faraday | rydberg | euler_gamma | bohr_radius | boltzmann

|
 bohr_magneton | golden | catalan | amu | electron_charge |

 ideal_gas | stefan_boltzmann | proton_mass | electron_mass
|

 neutron_mass | pem

WITHOUT_PARAM_FUNC = truecount | falsecount | undefcount | time | random |
 randomSign

UNARY_FUNC = abs | acos | acosh | asin | asinh | atan | atanh | cos |
 sec | sech | exp | cosh | fact | fractional | ln | log |

 round | cotan | cosec | cosech | sign | sin | sinh |
 statecount | sqrt | tan | tanh | trunc | truncUpper |
 poisson | exponential | randInt | chi | asec | acotan |
 asech | acosech | nextPrime | radToDeg | degToRad |
 nth_prime | acotanh | CtoF | CtoK | KtoC | KtoF | FtoC |
 FtoK

BINARY_FUNC = comb | logn | max | min | power | remainder | root | beta
|

 gamma | lcm | gcd | normal | f | uniform | binomial |
 rectToPolar_r | rectToPolar_angle | polarToRect_x | hip |
 polarToRect_y

COND_REAL_FUNC = even | odd | isInt | isPrime | isUndefined

CD++ User’s Guide

47 / 78

Figure 45: Grammar used for the definition of a cell’s local transition

Basically, a rule is made of three expressions: a result expression, a delay expression and a boolean
expression. The result expression should evaluate to any real value. The delay expression should
also evaluate to any real value that will be truncated to the smallest integer.

8.2 Precedence Order and Associativity of Operators

The precedence order indicates which operation will be solved first. For example if we have:

C + B * A

where * and + are the sum and multiplication operations for real numbers, and A, B and C are real
constants, then since * has higher precedence than +, B * A will be evaluated first. The sum will be
evaluate in a second step. The result will be equivalent to solve C + (B * A).

The associativity indicates which of two operations of same precedence will be evaluated first.
Operators are either left associative or right associative. The logical operators AND and OR are left
associative, so the in the expression

C and B or D

will be solved as (C and B) or D

Clauses that are not associative cannot be combined simultaneously without another operator of
different precedence.

The table of precedence and associativities for the rule specification language follows:

Order Code Associativity
AND OR XOR IMP EQV Left
NOT Right
= != > < >= <=
+ - Left
* / Left
FUNCTION
REAL INT BOOL COUNT ? STRING CONSTFUNC

Lower
Precendence

Higher
Precedence ()

Figure 1 – Precedence Order and Associativity used in CD++

8.3 Functions and Constants allowed by the language

8.3.1 Boolean Values

Boolean values in CD++ use trivalent logic.

The trivalent logic use the values T or 1 to represent to the value TRUE, F or 0 to represent the
FALSE, and ? to represent to the UNDEFINED.

CD++ User’s Guide

48 / 78

8.3.1.1 Boolean Operators

8.3.1.1.1 Operator AND

The behavior of the operator AND is defined with the following table of truth:

Figure 46: operator AND truthtable

AND T F ?
T T F ?
F F F F
? ? F ?

CD++ User’s Guide

49 / 78

8.3.1.1.2 Operator OR

The behavior of the operator OR is defined with the following table of truth:

Figure 47: Operator OR truthtable

8.3.1.1.3 Operator NOT

The behavior of the operator NOT is defined with the following table of truth:

Figure 48: Behavior of the boolean operator NOT

8.3.1.1.4 Operator XOR

The behavior of the operator XOR is defined with the following table of truth:

Figure 49: Operator XOR truthtable

8.3.1.1.5 Operator IMP

IMP represents the logic implication, and its behavior is defined with the following table of truth:

Figure 50: Operator IMP truthtable

OR T F ?
T T T T
F T F ?
? T ? ?

NOT
T F
F T
? ?

XOR T F ?
T F T ?
F T F ?
? ? ? ?

IMP T F ?
T T F ?
F T T T
? T ? ?

CD++ User’s Guide

50 / 78

8.3.1.1.6 Operator EQV

EQV represents the equivalence between trivalent logic values, and its behavior is defined with the
following table of truth:

Figure 51: Operator EQV truthtable

8.3.2 Functions and Operations on Real Numbers

8.3.2.1 Relational Operators

The relational operators work on real numbers1 and return a boolean value pertaining to the
previously defined trivalent logic. The language used by CD++ allows the use of the operators ==,
!=, >, <, >=, <= whose behavior is described next.

As opposed to the traditional definition of these operators, the introduction of an undefined value
makes the definition of a total order impossible because the value ? is not comparable with any
existing real number.

8.3.2.1.1 Operator =

The operator = is used to test for equality of two real numbers.

Figure 52: Behavior of the Relational Operator =

8.3.2.1.2 Operator !=

The operator != is used to test if two real numbers are not equal. Its behavior is defined as follows:

Figure 53: Behavior of the Relational Operator !=

1 From here, when referring to the term “Real Number” a value in the set R ∪ { ? } will be meant.

EQV T F ?
T T F F
F F T F
? F F T

= ? Real Number
? T ?

Real Number ? = of real number

!= ? Real Number
? F ?

Real Number ? ≠ of real number

CD++ User’s Guide

51 / 78

8.3.2.1.3 Operator >

The operator > is used to test if a real number is greater than another real number. Its behavior is
defined as follows:

Figure 54 : Behavior of the Relational Operator >

8.3.2.1.4 Operator <

The operator < is used to test if a real number is less then another real number. Its behavior is
defined as follows:

Figure 55 : Behavior of the Relational Operator <

8.3.2.1.5 Operator <=

The operator <= is used to test if a real number is less or equal to another real number. Its behavior
is defined as follows:

Figure 56 : Behavior of the Relational Operator <=

8.3.2.1.6 Operator >=

The operator >= is used to test if a real number is greater or equal to another real number. Its
behavior is defined as follows:

Figure 57: Behavior of the Relational Operator >=

8.3.2.2 Arithmetic Operators

The traditional arithmetic operators are available. If any of the operands is undefined, then the
result of the operation will be undefined. This is also valid for functions. If any of a function
arguments is undefined, the result of evaluating the function will also be undefined.

> ? Real Number
? F ?

Real Number ? > of real number

< ? Real Number
? F ?

Real Number ? < of real number

<= ? Real Number
? T ?

Real Number ? ≤ of real number

>= ? Real Number
? T ?

Real Number ? ≥ of real number

CD++ User’s Guide

52 / 78

The available operators are:

Figure 58: Arithmetic Operators

Division by zero will result to the undefined value.

8.3.2.3 Functions on Real Numbers

8.3.2.3.1 Functions to Verify Properties of Real Numbers

The functions in this section allow to check for special properties of real numbers, such as parity,
primality, etc.

Function Even
Signature: even : Real → Bool
Description: Returns True if the value is integer and even. If the value is undefined

returns Undefined. In any other case it returns False.
Examples: even(?) = F

even(3.14) = F
even(3) = F
even(2) = T

Function Odd
Signature: odd : Real → Bool
Description: Returns True if the value is integer and odd. If the value is undefined

returns Undefined. In any other case it returns False.
Examples: odd(?) = F

odd(3.14) = F
odd(3) = T
odd(2) = F

Function isInt
Signature: isInt : Real → Bool
Description: Returns True if the value is integer and not undefined. Any other case

returns False.
Examples: isInt(?) = F

isInt(3.14) = F
isInt(3) = T

Function isPrime
Signature: isPrime : Real → Bool
Description: Returns True if the value is a prime number. Any other case returns False.
Examples: isPrime(?) = F

isPrime(3.14) = F
isPrime(6) = F
isPrime(5) = T

op1 + op2 returns the sum of the operators.
op1 – op2 returns the difference between the operators.
op1 / op2 returns the value of the op1 divided by op2.
op1 * op2 returns the product of the operators.

CD++ User’s Guide

53 / 78

Function isUndefined
Signature: isUndefined : Real → Bool
Description: Returns True if the value is undefined, else returns False.
Examples: isUndefined(?) = T

isUndefined(4) = F

8.3.2.3.2 Mathematical Functions

This section describes commonly used mathematical functions.

8.3.2.3.2.1 Trigonometric Functions

Function tan
Signature: tan : Real a → Real
Description: Returns the tangent of a measured in radians.

For the values near to π/2 radians, returns the constant INF.
If a is undefined then return undefined.

Examples: tan(PI / 2) = INF
tan(?) = ?
tan(PI) = 0

Function sin
Signature: sin : Real a → Real
Description: Returns the sine of a measured in radians.

If a has the value ? then returns ?.

Function cos
Signature: cos : Real a → Real
Description: Returns the cosine of a measured in radians.

If a has the value? the returns?.

Function sec
Signature: sec : Real a → Real
Description: Returns the secant of a measured in radians.

If a has the value? then returns?.
If the angle is of the form π/2 + x.π, with x an integer number, then returns
the constant INF.

Function cotan
Signature: cotan : Real a → Real
Description: Calculates the cotangent of a.

If a has the value? Then returns ?.
If a is zero or multiple of π, then returns INF.

Function cosec
Signature: cosec : Real a → Real
Description: Calculates the cosecant of a.

If a has the value ?, then returns?.
If a is zero or multiple of π, then returns INF.

Function atan

CD++ User’s Guide

54 / 78

Signature: atan : Real a → Real
Description: Returns the arc tangent of a measured in radians, which is defined as the

value b such tan(b) = a.
If a has the value? Then returns?.

Function asin
Signature: asin : Real a → Real
Description: Returns the arc sine of a measured in radians, which is defined as the value

b such sin(b) = a.
If a has the value? or if a ∉ [-1, 1], then returns ?.

Function acos
Signature: acos : Real a → Real
Description: Returns the arc cosine of a measured in radians, which is defined as the

value b such cos(b) = a.
If a has the value? or if a ∉ [-1, 1], then returns ?.

Function asec
Signature: asec : Real a → Real
Description: Returns the arc secant of a measured in radians, which is defined as the

value b such sec(b) = a.
If a is undefined (?) or if |a| < 1, then returns ?.

Function acotan
Signature: acotan : Real a → Real
Description: Returns the arc cotangent of a measured in radians, which is defined as the

value b such cotan(b) = a.
If a is undefined (?), then returns ?.

Function sinh
Signature: sinh : Real a → Real
Description: Returns the hyperbolic sine of a measured in radians.

If a has the value ?, then returns ?.

Function cosh
Signature: cosh : Real a → Real
Description: Returns the hyperbolic cosine of a measured in radians, which is defined as

cosh(x) = (e x + e - x) / 2.
If a has the value ?, then returns ?.

Function tanh
Signature: tanh : Real a → Real
Description: Returns the hyperbolic tangent of a measured in radians, which is defined

as sinh(a) / cosh(a).
If a has the value?, then returns ?.

Function sech
Signature: sech : Real a → Real
Description: Returns the hyperbolic secant of a measured in radians, which is defined

as
1 / cosh(a)
If a has the value ?, then returns ?.

CD++ User’s Guide

55 / 78

Function cosech
Signature: cosech : Real a → Real
Description: Returns the hyperbolic cosecant of a measured in radians.

If a has the value ?, then returns ?.

Function atanh
Signature: atanh : Real a → Real
Description: Returns the hyperbolic arc tangent of a measured in radians, which is

defined as the value b such tanh(b) = a.
If a has the value ?, or if its absolute value is greater than 1 (i.e., a ∉ [-1,
1]), then returns ?.

Function asinh
Signature: asinh : Real a → Real
Description: Returns the hyperbolic arc sine of a measured in radians, which is defined

as the value b such sinh(b) = a.
If a has the value ?, then returns ?.

Function acosh
Signature: acosh : Real a → Real
Description: Returns the hyperbolic arc cosine of a measured in radians, which is

defined as the value b such cosh(b) = a.
If a has the value ? or is less than 1, then returns ?.

Function asech
Signature: asech : Real a → Real
Description: Returns the hyperbolic arc secant of a measured in radians, which is

defined as the value b such sech(b) = a.
If a is undefined, then return ?. If it is zero, then returns the constant INF.

Function acosech
Signature: acosech : Real a → Real
Description: Returns the hyperbolic arc cosec of a measured in radians, which is defined

as the value b such cosech(b) = a.
If a is undefined, then returns ?. If it is zero, then returns the constant INF.

Function acotanh
Signature: acotanh : Real a → Real
Description: Returns the hyperbolic arc cotangent of a measured in radians, which is

defined as the value b such cotanh(b) = a.
If a is undefined, then returns ?. If is 1 then returns the constant INF.

Function hip
Signature: hip : Real c1 x Real c2 → Real
Description: Calculates the hypotenuse of the triangle composed by the side c1 and c2.

If c1 or c2 are undefined or negatives, then returns ?.

8.3.2.3.2.2 Functions to calculate Roots, Powers and Logarithms.

Function sqrt

CD++ User’s Guide

56 / 78

Signature: sqrt : Real a → Real
Description: Returns the square root of a.

If a is undefined or negative, then returns ?.
Examples : sqrt(4) = 2

sqrt(2) = 1.41421
sqrt(0) = 0
sqrt(-2) = ?
sqrt(?) = ?

Note: sqrt(x) is equivalent to root(x, 2) ∀x

Function exp
Signature: exp : Real x → Real
Description: Returns the value of ex.

If x is undefined, then return ?.
Examples: exp(?) = ?

exp(–2) = 0.135335
exp(1) = 2.71828
exp(0) = 1

Function ln
Signature: ln : Real a → Real
Description: Returns the natural logarithm of a.

If a is undefined or is less or equal than zero, then returns ?.
Examples: ln(–2) = ?

ln(0) = ?
ln(1) = 0
ln(?) = ?

Note: ln(x) is equivalent to logn(x, e) ∀x

Function log
Signature: log : Real a → Real
Description: Returns the logarithm in base 10 of a.

If a is undefined or less or equal to zero, then returns ?.
Examples: log(3) = 0.477121

log(–2) = ?
log(?) = ?
log(0) = ?

Note: log(x) is equivalent to logn(x, 10) ∀x

Function logn
Signature: logn : Real a x Real n → Real
Description: Returns the logarithm in base n of the value a.

If a or n are undefined, negatives or zero, then returns ?.
Notes: logn(x, e) is equivalent to ln(x) ∀x

logn(x, 10) is equivalent to log(x) ∀x

Function power
Signature: power : Real a x Real b → Real
Description: Returns ab.

If a or b are undefined or b is not an integer, then returns ?.

Function root

CD++ User’s Guide

57 / 78

Signature: root : Real a x Real n → Real
Description: Returns the n–root of a.

If a or n are undefined, then returns ?. Also, returns this value if a is
negative or n is zero.

Examples: root(27, 3) = 3
root(8, 2) = 3
root(4, 2) = 2
root(2, ?) = ?
root(3, 0.5) = 9
root(–2, 2) = ?
root(0, 4) = 0
root(1, 3) = 1
root(4, 3) = 1.5874

Note: root(x, 2) is equivalent to sqrt(x) ∀x

8.3.2.3.2.3 Functions to calculate GCD, LCM and the Rest of the Numeric Division

Function LCM
Signature: lcm : Real a x Real b → Real
Description: Returns the Less Common Multiplier between a and b.

If a or b are undefined or non–integers, then returns ?.
The value returned is always integer.

Function GCD
Signature: gcd : Real a x Real b → Real
Description: Calculates the Greater Common Divisor betweeen a and b.

If a or b are undefined or non–integers, then returns ?.
The value returned is always integer.

Function remainder
Signature: remainder : Real a x Real b → Real
Description: Calculates the remaindert of the división between a and b. The returned

value is: a – n * b, where n is the quotient a/b rounded as an integer.
If a or b are undefined, then returns ?.

Examples: remainder(12, 3) = 0
remainder(14, 3) = 2
remainder(4, 2) = 0
remainder(0, y) = 0 ∀ y ≠ ?
remainder(x, 0) = x ∀ x
remainder(1.25, 0.3) = 0.05
remainder(1.25, 0.25) = 0
remainder(?, 3) = ?
remainder(5, ?) = ?

8.3.2.3.3 Functions to Convert Real Values to Integers Values

This section presents functions available to convert real values to integers using the rounding and
truncation techniques as detailed.

Function round
Signature: round : Real a → Real

CD++ User’s Guide

58 / 78

Description: Rounds the value a to the nearest integer.
If a is undefined ?, then returns ?.

Examples: round(4) = 4
round(?) = ?
round(4.1) = 4
round(4.7) = 5
round(–3.6) = –4

Function trunc
Signature: trunc: Real x → Real
Description: Returns the greater integer number less or equal than x.

If x is undefined, then returns ?.
Examples: trunc(4) = 4

trunc(?) = ?
trunc(4.1) = 4
trunc(4.7) = 4

Function truncUpper
Signature: truncUpper: Real x → Real
Description: Returns the smallest integer number greater or equal than x.

If x is undefined, then returns ?.
Examples: truncUpper(4) = 4

truncUpper(?) = ?
truncUpper(4.1) = 5
truncUpper(4.7) = 5

Function fractional
Signature: fractional : Real a → Real
Description: Returns the fractional part of a, including the sign.

If a is undefined then returns ?.
Examples: fractional(4.15) = 0.15

fractional(?) = ?
fractional(-3.6) = -0.6

8.3.2.3.4 Functions to manipulate the Sign of numerical values

Function abs
Signature: abs : Real a → Real
Description: Returns the absolute value of a.

If a is undefined then returns ?.
Examples: abs(4.15) = 4.15

abs(?) = ?
abs(-3.6) = 3.6
abs(0) = 0

Function sign
Signature: sign : Real a → Real
Description: Returns the sign of a in the following form:

If a > 0 then returns 1.
If a < 0 then returns –1.
If a = 0 then returns 0.
If a = ? then returns ?.

CD++ User’s Guide

59 / 78

Function randomSign
See the section 8.3.2.3.8.

8.3.2.3.5 Functions to manipulate Prime numbers

This functions are used to test for primality. Although they are available, they are quite
complex and can require a lot of time to solve.

Function isPrime
See the section 8.3.2.3.1.

Function nextPrime
Signature: nextPrime : Real r → Real
Description: Returns the next prime number greater than r.

If r is undefined then returns ?.
If an overflow occur when calculating the next prime number, the constant
INF is returned.

Function nth_Prime
Signature: nth_Prime : Real n → Real
Description: Returns the nth prime number, considering as the first prime number the

value 2.
If n is undefined or non–integer then returns ?.
If an overflow occur when calculating the next prime number, the constant
INF is returned.

8.3.2.3.6 Functions to calculate Minimum and Maximums

Function min
Signature: min : Real a x Real b → Real
Description: Return the minimum between a and b.

If a or b are undefined then returns ?.

Function max
Signature: max : Real a x Real b → Real
Description: Returns the maximum between a and b.

If a or b are undefined then returns ?.

8.3.2.3.7 Conditional Functions

The functions described in this section return a real value that depends on the evaluation of a
specified logical condition.

Function if
Signature: if : Bool c x Real t x Real f → Real
Description: If the condition c is evaluated to TRUE, then returns the evaluation of t,

else returns the evaluation of f.
The values of t and f can even come from the evaluation of any expression
that returns a real value, including another if sentence.

CD++ User’s Guide

60 / 78

Examples: If you wish to return the value 1.5 when the natural logarithm of the cell
(0, 0) is zero or negative, or 2 in another case. In this case, it will be
written:

if (ln((0, 0)) = 0 or (0, 0) < 0, 1.5, 2)
If you wants to return the value of the cells (1, 1) + (2, 2) when the cell (0,
0) isn’t zero; or the square root of (3, 3) in another case, it will be written:

if ((0, 0) != 0, (1, 1) + (2, 2), sqrt(3, 3))
It can also be used for the treatment of a numeric overflow. For example, if
the factorial of the cell (0, 1) produces an overflows, then return –1, else
return the obtained result. In this case, it will be written:

if (fact((0, 1)) = INF, –1, fact((0, 1)))

Function ifu
Signature: ifu : Bool c x Real t x Real f x Real u → Real
Description: If the condition c is evaluated to TRUE, then returns the evaluation of t. If

it evaluates to FALSE, returns the evaluation of f. Else (i.e. is undefined),
returns the evaluation of u.

Examples: If you wish to return the value of the cell (0, 0) if its value is distinct than
zero and undefined, 1 if the value of the cell is 0, and π if the cell has the
undefined value. In this case, it will be invoked:

ifu((0, 0) != 0, (0, 0), 1, PI)

8.3.2.3.8 Probabilistic Functions

Function randomSign
Signature: randomSign : → Real
Description: Randomly returns a numerical value that represents a sign (+1 or –1), with

equal probability for both values.

Function random
Signature: random : → Real
Description: Returns a random real value pertaining to the interval (0, 1), with uniform

distribution.
Note: random is equivalent to uniform(0,1).

Function chi
Signature: chi : Real df → Real
Description: Returns a random real number with Chi–Squared distribution with df

degree of freedom.
If df is undefined, negative or zero, then returns ?.

Function beta
Signature: beta : Real a x Real b → Real
Description: Returns a random real number with Beta distribution, with parameters a

and b.
If a or b are undefined or less than 10-37, then returns ?.

Function exponential
Signature: exponential : Real av → Real
Description: Returns a random real number with Exponential distribution, with average

av.
If av is undefined or negative, then returns ?.

CD++ User’s Guide

61 / 78

Function f
Signature: f : Real dfn x Real dfd → Real
Description: Returns a random real number with F distribution, with dfn degree of

freedom for de numerator, and dfd for the denominator.
If dfn or dfd are undefined, negatives or zero, then return ?.

Function gamma
Signature: gamma : Real a x Real b → Real
Description: Returns a random real number with Gamma distribution with parameters

(a, b).
If a or b are undefined, negatives or zero, then returns ?.

Function normal
Signature: normal : Real µ x Real σ → Real
Description: Returns a random real number with Normal distribution (µ, σ), where µ is

the average, and σ is the standard error.
If µ or σ are undefined, or σ is negative, returns ?.

Function uniform
Signature: uniform : Real a x Real b → Real
Description: Returns a random real number with uniform distribution, pertaining to the

interval (a, b).
If a or b are undefined, or a > b, then returns ?.

Note: uniform(0, 1) is equivalent to the function random.

Function binomial
Signature: binomial : Real n x Real p → Real
Description: Returns a random number with Binomial distribution, where n is the

number of attempts, and p is the success probability of an event.
If n or p are undefined, n is not integer or negative, or p not pertain to the
interval [0, 1], then return ?.
The returned number is always an integer.

Function poisson
Signature: poisson : Real n → Real
Description: Return a random number with Poisson distribution, with average n.

If n is undefined or negative, then returns ?.
The returned number is always an integer.

Function randInt
Signature: randInt : Real n → Real
Description: Returns an integer random number contained in the interval [0, n], with

uniform distribution.
If n is undefined, then returns ?.

Note: randInt(n) is equivalent to round(uniform(0, n))

CD++ User’s Guide

62 / 78

8.3.2.3.9 Functions to calculate Factorials and Combinatorial

Function fact
Signature: fact : Real a → Real
Description: Returns the factorial of a.

If a is undefined, negative or non–integer, then return ?.
If an overflow occur when calculating the next prime number, the constant
INF is returned.

Examples: fact(3) = 6
fact(0) = 1
fact(5) = 120
fact(13) = 1.93205e+09
fact(43) = INF

Function comb
Signature: comb : Real a x Real b → Real

Description: Returns the combinatory 







b

a

If a or b are undefined, negatives or zero, or non–integers, then returns ?.
This value is also returned if a < b.
If an overflow occur when calculating the next prime number, the constant
INF is returned.

8.3.2.4 Functions for the Cells and his Neighborhood

This section details the functions that allow to count the quantity of cells belonging to the
neighborhood whose state has certain value, as also the function cellPos that allows to project an
element of the tupla that references to the cell.

Function stateCount
Signature: stateCount : Real a → Real
Description: Returns the quantity of neighbors of the cell whose state is equal to a.

Function trueCount
Signature: trueCount : → Real
Description: Returns the quantity of neighbors of the cell whose state is 1.

This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

Function falseCount
Signature: falseCount : → Real
Description: Returns the quantity of neighbors of the cell whose state is 0.

This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

Function undefCount
Signature: undefCount : → Real
Description: Returns the quantity of neighbors of the cell whose state is undefined (?).

This function is equivalent to stateCount(1) and it is not removed from the
language to offer compatibility with CD++.

CD++ User’s Guide

63 / 78

Function cellPos
Signature: cellPos : Real i → Real
Description: Returns the ith position inside the tupla that references to the cell. That is to

say, given the cell (x0,x1,...,xn), then cellPos(i) = xi.
If the value of i is not integer, then it will be automatically truncated.
If i ∉[0, n+1), where n is the dimension of the model, it will produce an
error that will abort the simulation.
The value returned always will be an integer.

Examples: Given the cell (4, 3, 10, 2):
cellPos(0) = 4
cellPos(3.99) = cellPos(3) = 2
cellPos(1.5) = cellPos(1) = 3
cellPos(–1) y cellPos(4) will generate an error.

8.3.2.5 Functions to Get the Simulation Time

Function Time
Signature: time : → Real
Description: Returns the time of the simulation at the moment in that the rule this being

evaluated, expressed in milliseconds.

8.3.2.6 Functions to Convert Values between different units

8.3.2.6.1 Functions to Convert Degrees to Radians

Function radToDeg
Signature: radToDeg : Real r → Real
Description: Converts the value r from radians to degrees.

If r is undefined then returns ?.

Function degToRad
Signature: degToRad : Real r → Real
Description: Converts the value r from degrees to radians.

If r is undefined then returns ?.

8.3.2.6.2 Functions to Convert Rectangular to Polar Coordinates

Function rectToPolar_r
Signature: rectToPolar_r : Real x x Real y → Real
Description: Converts the Cartesian coodinate (x, y) to the polar form (r, θ), and returns

r.
If x or y are undefined then return ?.

Function rectToPolar_angle
Signature: rectToPolar_angle : Real x x Real y → Real
Description: Converts the Cartesian coordinate (x, y) to the polar form (r, θ), and returns

θ.
If x or y are undefined then return ?.

CD++ User’s Guide

64 / 78

Function polarToRect_x
Signature: polarToRect_x : Real r x Real θ → Real
Description: Converts the polar coordinate (r, θ) to the Cartesian form (x, y), and returns

x.
If r or θ are undefined, or r is negative, then returns ?.

Function polarToRect_y
Signature: polarToRect_y : Real r x Real θ → Real
Description: Converts the polar coordinate (r, θ) to the Cartesian form (x, y), and returns

y.
If r or θ are undefined, or r is negative, then returns ?.

8.3.2.6.3 Functions to Covert Temperatures between different units

Function CtoF
Signature: CtoF : Real → Real
Description: Converts a value expressed in Centigrade degrees to Fahrenheit degrees.

If the value is undefined then returns ?.

Function CtoK
Signature: CtoK : Real → Real
Description: Converts a value expressed in Centigrade degrees to Kelvin degrees.

If the value is undefined then returns ?.

Function KtoC
Signature: KtoC : Real → Real
Description: Converts a value expressed in Kelvin degrees to Centigrade degrees.

If the value is undefined then returns ?.

Function KtoF
Signature: KtoF : Real → Real
Description: Converts a value expressed in Kelvin degrees to Fahrenheit degrees.

If the value is undefined then returns ?.
Function FtoC

Signature: FtoC : Real → Real
Description: Converts a value expressed in Fahrenheit degrees to Centigrade degrees.

If the value is undefined then returns ?.

Function FtoK
Signature: FtoK : Real → Real
Description: Converts a value expressed in Fahrenheit degrees to Kelvin degrees.

If the value is undefined then returns ?.

CD++ User’s Guide

65 / 78

8.3.2.7 Functions to manipulate the Values on the Input and Output Ports

Function portValue
Signature: portValue : String p → Real
Description: Returns the last value arrived through the input port p of the cell of the cell

being evaluated. This function will only be available for PortInTransition
rules (see section 9.3) . Other uses will generate an error.

If no message has arrived through port p before portValue is evaluated, an
undefined value (?) will be returned. Otherwise, the last value received
through the port will be returned.

When the string “thisPort” is used as the port name, the value received
through the port associated with the current PortInTransition will be
returned. For example:

The following model has two different PortInTransitions

PortInTransition: portA@cell(0,0) functionA
PortInTransition: portB@cell(1,1) functionB

[functionA]
rule: 10 100 { portValue(portA) > 10 }
rule: 0 100 { t }

[functionB]
rule: 10 100 { portValue(portB) > 10 }
rule: 0 100 { t }

Figure 59 : Example of use of the function portValue

If we wanted to avoid repeating the same transition twice, we could either
give the two ports the same name or use thisPort as shown next:

PortInTransition: portA@cell(0,0) functionA
PortInTransition: portB@cell(1,1) functionA

[functionA]
rule: 10 100 { portValue(thisPort) > 10 }
rule: 0 100 { t }

Figure 60 : Example of use of the function portValue with thisPort

Section 9.3 shows an example where the portInTransition clause is used.

Function send
Signature: send : String p x Real x → 0
Description: Sends the value x through the output port p.

If the output port p has not been defined, an error will be raised and the
simulation will be aborted. This function is usually used to send values to
other DEVS models.

CD++ User’s Guide

66 / 78

send always returns 0. This makes it possible to include the function send
in the result section of a rule without modifying the actual results.

{ (0,0) + send(port1, 15 * log(10)) } 100 { (0,0) > 10 }

Note: Send is a function of the language that can be used in any
expression, as for example, in the definition of a condition. However, this
is not recommended because for every condition that is evaluated that
includes the function send, a value will be sent. Instead, send should be
used in the expression for the delay or the value of the cell.

8.3.3 Predefined Constants

The following constants frequently used in the domains of the physics and the chemistry are
available.

Constant Pi
Returns 3.14159265358979323846, which represent the value of π, the relation between the
circumference and the radius of the circle.

Constant e
Returns 2.7182818284590452353, which represent the value of the base of the natural
logarithms.

Constant INF
This constant represents to the infinite value, although in fact it returns the maximum value
valid for a Double number (in processors Intel 80x86, this number is 1.79769 x 10308).
Note that if, for example, we make x + INF – INF, where x is any real value, we will get 0 as
a result, because the operator + is associative to left, for that will be solved:

(x + INF) – INF = INF – INF = 0.
Note: When being generated a numeric overflows taken place by any operation, it is returned
INF or –INF. For example: power(12333333, 78134577) = INF.

Constant electron_mass
Returns the mass of an electron, which is 9.1093898 x 10 –28 grams.

Constant proton_mass
Returns the mass of a proton, which is 1.6726231 x 10 –24 grams.

Constant neutron_mass
Returns the mass of a neutron, which is 1.6749286 x 10 –24 grams.

Constant Catalan

Returns the Catalan’s constant, which is defined as ∑
∞

=

−+−
0

2)12.()1(
k

kk , that is

approximately 0.9159655941772.

Constant Rydberg
Returns the Rydberg’s constant, which is defined as 10.973.731,534 / m.

CD++ User’s Guide

67 / 78

Constant grav
Returns the gravitational constant, defined as 6,67259 x 10-11 m3 / (kg . s2)

Constant bohr_radius
Returns the Bohr’s radius, defined as 0,529177249 x 10-10 m.

Constant bohr_magneton
Returns the value of the Bohr’s magneton, defined as 9,2740154 x 10-24 joule / tesla.

Constant Boltzmann
Returns the value of the Boltzmann’s constant, defined as 1,380658 x 10-23 joule / °K.

Constant accel
Returns the standard acceleration constant, defined as 9,80665 m / sec2.

Constant light
Returns the constant that represents the light speed in a vacuum, defined as 299.792.458 m /
sec.

Constant electron_charge
Returns the value of the electron charge, defined as 1,60217733 x 10-19 coulomb.

Constant Planck
Returns the Planck’s constant, defined as 6,6260755 x 10-34 joule . sec.

Constant Avogadro
Returns the Avogadro’s number, defined as 6,0221367 x 1023 mols.

Constant amu
Returns the Atomic Mass Unit, defined as 1,6605402 x 10-27 kg.

Constant pem
Returns the ratio between the proton and electron mass, defined as 1836,152701.

Constant ideal_gas
Returns the constant of the ideal gas, defined as 22,41410 litres / mols.

Constant Faraday
Returns the Faraday’s constant, defined as 96485,309 coulomb / mol.

Constant Stefan_boltzmann
Returns the Stefan-Boltzmann’s constant, defined as 5,67051 x 10-8 Watt / (m2 . °K4)

Constant golden

Returns the Golden Ratio, defined as
2

51+
.

Constant euler_gamma
Returns the value of the Euler’s Gamma, defined as 0.5772156649015.

CD++ User’s Guide

68 / 78

8.4 Techniques to Avoid the Repetition of Rules

This section describes different techniques that allow to avoid repeating rules. This helps to make
models more readable.

8.4.1 Clause Else

When the clause portInTransition is used (see section 9.3), it is possible to use the clause else to
give an alternative rule in case that none of the rules evaluates to true.

Figure 61 shows a short example where the Else clause is used. The default local transition for the
cells in this model is default_rule. In addition, cell (13,13) defines a special funcion to be used
when an external event arrives through port In. If none of the conditions for the rules that make this
functions is satisfied, then the else clause sets default_rule as the function to be evaluated.

[demoModel]
type: cell
...
link: in in@demoModel(13,13)
localTransition: default_rule
portInTransition: in@demoModel(13,13) another_rule

[default_rule]
rule: ...
...
rule: ...

[another_rule]
rule: 1 1000 { portValue(thisPort) = 0 }
...
else: default_rule

Figure 61 : Example of the Else clause

The Else clause can point to any valid transition function. Care must be taken to avoid circular
references, as in the example shown next.

[another_rule1]
rule: 1 1000 { portValue(thisPort) = 0 }
rule: 1.5 1000 { (0,0) = 5 }
rule: 3 1500 { (1,1) + (0,0) >= 1 }
else: another_rule2

[another_rule2]
rule: 1 1000 { (0,0) + portValue(thisPort) > 3 }
else: another_rule1

Figure 62 : A circular reference produced by a bad use of the clause Else

CD++ will detect the special case shown in Figure 63, where the else clause references the same
function being defined.

CD++ User’s Guide

69 / 78

[another_rule]
rule: ...
rule: ...
else: another_rule

Figure 63 : Example of a circular reference detected by the simulator

8.4.2 Preprocessor – Using Macros

CD++ has a preprocessor that will expand macros. If macros are not used, the preprocessor can be
disabled using the command line argument –b to speed up model parsing.

Macros are usually defined in separate files that are included in the main .ma file be means of the
preprocessor #include directive, which is of the form

#include(fileName)

where fileName is the name of the file that contains the definition of the macros. This file should be
in the same directory where the main .ma file is.

More than one #include directive is allowed in the main .ma file, but no included files can have
themselves the #include directive.

To define a macro, the directives #BeginMacro and #EndMacro are used.

A macro definition has the form:

#BeginMacro(macroName)
...
...definition of the macro...
...
#EndMacro

Figure 64 : Definition of a macro

Macros can contain any valid text in any number of lines. The only restriction that applies is that
they can not be used in the same file they are defined.

To expand a macro, the #Macro directive should be used in the place were the macro shoudl be
expanded. A #macro directive is of the form

#Macro(macroName)

An included file can contain any number of macro definitions. Any text in these files that is outside
the macro definitions is ignored. If a required macro is not found, an error will be reported.

An #include directive can be placed at any line of the .ma file, as long as the macros therein
defined are used after the #include.

A macro can not make use of another macro.

CD++ User’s Guide

70 / 78

Within a .ma file, the preprocessor allows comments. Comments begin with a % . All text between
the % and the end of the line is ignored.

% Here begins the rules
Rule : 1 100 { truecount > 1 or (0,0,1) = 2 } % Validate the existence
 % of another individual.

Figure 65 : A .ma file with comments

Section 9.5 shows a model where macros are used.

For special considerations regarding files created by the preprocessor, please see Appendix B.

CD++ User’s Guide

71 / 78

9 Appendix B – Examples

9.1 The “ Life Game”

The Life Game was presented in Scientific American by the well known mathematician
Martin Gardner. In this game, living cells will live or die. The rules for life evolution are as
follows:

• An active cell will remain in this state if it has two or three active neighbors.
• An inactive cell will pass to active state if it has two active neighbors exactly.
• In any other case, the cell will die

The implementation of this model in CD++ is as follows:

[top]
components : life

[life]
type : cell
width : 20
height : 20
delay : transport
border : wrapped
neighbors : life(-1,-1) life(-1,0) life(-1,1)
neighbors : life(0,-1) life(0,0) life(0,1)
neighbors : life(1,-1) life(1,0) life(1,1)
initialvalue : 0
initialrowvalue : 1 00010001111000000000
initialrowvalue : 2 00110111100010111100
initialrowvalue : 3 00110000011110000010
initialrowvalue : 4 00101111000111100011
initialrowvalue : 10 01111000111100011110
initialrowvalue : 11 00010001111000000000
localtransition : life-rule

[life-rule]
rule : 1 100 { (0,0) = 1 and (truecount = 3 or truecount = 4) }
rule : 1 100 { (0,0) = 0 and truecount = 2 }
rule : 0 100 { t }

Figure 66 : Implementation of the Game of Life

9.2 A bouncing object

The following is the specification of a model that represents an object in movement that bounces
against the borders of a room. This example is ideal to illustrate the use of a non toroidal cellular
automata, where the cells of the border have different behavior to the rest of the cells.

For the representation of the problem, 5 different values are used for the states of each cell, these
values are:

CD++ User’s Guide

72 / 78

0 = represents an empty cell.
1 = represents the object moving toward the south east.
2 = represents the object moving toward the north east.
3 = represents the object moving toward the south west.
4 = represents the object moving toward the north west.

The specification of the model is:

[top]
components : rebound

[rebound]
type : cell
width : 20
height : 15
delay : transport
defaultDelayTime : 100
border : nowrapped
neighbors : rebound(-1,-1) rebound(-1,1)
neighbors : rebound(0,0)
neighbors : rebound(1,-1) rebound(1,1)
initialvalue : 0
initialrowvalue : 13 00000000000000000010
localtransition : move-rule
zone : cornerUL-rule { (0,0) }
zone : cornerUR-rule { (0,19) }
zone : cornerDL-rule { (14,0) }
zone : cornerDR-rule { (14,19) }
zone : top-rule { (0,1)..(0,18) }
zone : bottom-rule { (14,1)..(14,18) }
zone : left-rule { (1,0)..(13,0) }
zone : right-rule { (1,19)..(13,19) }

[move-rule]
rule : 1 100 { (-1,-1) = 1 }
rule : 2 100 { (1,-1) = 2 }
rule : 3 100 { (-1,1) = 3 }
rule : 4 100 { (1,1) = 4 }
rule : 0 100 { t }

[top-rule]
rule : 3 100 { (1,1) = 4 }
rule : 1 100 { (1,-1) = 2 }
rule : 0 100 { t }

[bottom-rule]
rule : 4 100 { (-1,1) = 3 }
rule : 2 100 { (-1,-1) = 1 }
rule : 0 100 { t }

[left-rule]
rule : 1 100 { (-1,1) = 3 }
rule : 2 100 { (1,1) = 4 }
rule : 0 100 { t }

[right-rule]
rule : 3 100 { (-1,-1) = 1 }
rule : 4 100 { (1,-1) = 2 }
rule : 0 100 { t }

[cornerUL-rule]
rule : 1 100 { (1,1) = 4 }

CD++ User’s Guide

73 / 78

rule : 0 100 { t }

[cornerUR-rule]
rule : 3 100 { (1,-1) = 2 }
rule : 0 100 { t }

[cornerDL-rule]
rule : 2 100 { (-1,1) = 3 }
rule : 0 100 { t }

[cornerUR-rule]
rule : 4 100 { (-1,-1) = 1 }
rule : 0 100 { t }

Figure 67: Implementation of the Rebound of an Object

9.3 Classification of raw materials

The aim of this example is to show the use of special behavior that can be given to a cell when an
external event arrives through an input port. We have a model that represents the packing and
classification of certain raw material that contains 30% of carbon approximately. The model is
made of a machine that loads 100 grams fractions of that substance in a carrying band. One a
fraction reaches the end of the band, it is processed by a packager that takes these fractions until a
kilogram is obtained. Then, the packed substance is classified. If each packet contains 30 ± 1 % of
carbon, it is classified as of first quality; otherwise, it will be of second quality.

The model uses the atomic model Generator that generates values (in this case always the value 1)
each x seconds (where x has and Exponential distribution with average 3). These values are passed
to the carry band, represented by a cellular mode. At the end of the band, another cellular model
makes the packaging and selection.

Figure 68: Coupling structure for the Classification of Substances

The following is the specification of the model:

[top]
components : genSubstances@Generator queue packing
out : outFirstQuality outSecondQuality
link : out@genSunstances in@queue
link : out@queue in@packing
link : out1@packing outFirstQuality
link : out2@packing outSecondQuality

GENR

Carry Band

Packing &
Classification

1st

Quality

2nd

Quality

CD++ User’s Guide

74 / 78

[genSubstances]
distribution : exponential
mean : 3
initial : 1
increment : 0

[queue]
type : cell
width : 6
height : 1
delay : transport
defaultDelayTime : 1
border : nowrapped
neighbors : queue(0,-1) queue(0,0) queue(0,1)
initialvalue : 0
in : in
out : out
link : in in@queue(0,0)
link : out@queue(0,5) out
localtransition : queue-rule
portInTransition : in@queue(0,0) setSubstance

[queue-rule]
rule : 0 1 { (0,0) != 0 and (0,1) = 0 }
rule : { (0,-1) } 1 { (0,0) = 0 and (0,-1) != 0 and not isUndefined((0,-
1)) }
rule : 0 3000 { (0,0) != 0 and isUndefined((0,1)) }
rule : { (0,0) } 1 { t }

[setSubstance]
rule : { 30 + normal(0,2) } 1000 { t }

[packing]
type : cell
width : 2
height : 2
delay : transport
defaultDelayTime : 1000
border : nowrapped
neighbors : packing(-1,-1) packing(-1,0) packing(-1,1)
neighbors : packing(0,-1) packing(0,0) packing(0,1)
neighbors : packing(1,-1) packing(1,0) packing(1,1)
in : in
out : out1 out2
initialvalue : 0
initialrowvalue : 0 00
initialrowvalue : 1 00
link : in in@ packing(0,0)
link : in in@ packing(1,0)
link : out@ packing(0,1) out1
link : out@ packing(1,1) out2
localtransition : packing-rule
portInTransition : in@packing(0,0) add-rule
portInTransition : in@packing(1,0) incQuantity-rule

[packing-rule]
rule : 0 1000 { isUndefined((1,0)) and isUndefined((0,-1)) and (0,0) = 10
}
rule : 0 1000 { isUndefined((-1,0)) and isUndefined((0,-1)) and (1,0) =
10 }
rule : { (0,-1) / (1,-1) } 1000 { isUndefined((-1,0)) and
isUndefined((0,1))
 and (1,-1) = 10 and abs((0,-1) / (1,-1) - 30) <=
1 }

CD++ User’s Guide

75 / 78

rule : { (-1,-1) / (0,-1) } 1000 { isUndefined((1,0)) and
isUndefined((0,1))
 and (0,-1) = 10 and abs((-1,-1) / (0,-1) - 30) >
1 }
rule : { (0,0) } 1000 { t }

[add-rule]
rule : { portValue(thisPort) + (0,0) } 1000 { portValue(thisPort) != 0 }
rule : { (0,0) } 1000 { t }

[incQuantity-rule]
rule : { 1 + (0,0) } 1000 { portValue(thisPort) != 0 }
rule : { (0,0) } 1000 { t }

Figure 69: Implementation of the Model to Classify Substances

The cellular model queue that represents the carry band makes use of the portInTranstition
clause. As it was mentioned earlier, this clause is used to set the rule that will be evaluated when an
external event is received by the cell through the specified port. This clause is then used again in
the definition of the model Packing set the behavior of the cells upon the reception of a raw
material from the carry band.

9.4 Life Game – 3D

The next example is an adaptation of the Game of the Life to a three dimensional space.

Figure 70 shows the model definition and Figure 71 lists the contents of file “3d-life.val” that
contains the initial values for the cell.

[top]
components : 3d-life

[3d-life]
type : cell
dim : (7,7,3)
delay : transport
defaultDelayTime : 100
border : wrapped
neighbors : 3d-life(-1,-1,-1) 3d-life(-1,0,-1) 3d-life(-1,1,-1)
neighbors : 3d-life(0,-1,-1) 3d-life(0,0,-1) 3d-life(0,1,-1)
neighbors : 3d-life(1,-1,-1) 3d-life(1,0,-1) 3d-life(1,1,-1)
neighbors : 3d-life(-1,-1,0) 3d-life(-1,0,0) 3d-life(-1,1,0)
neighbors : 3d-life(0,-1,0) 3d-life(0,0,0) 3d-life(0,1,0)
neighbors : 3d-life(1,-1,0) 3d-life(1,0,0) 3d-life(1,1,0)
neighbors : 3d-life(-1,-1,1) 3d-life(-1,0,1) 3d-life(-1,1,1)
neighbors : 3d-life(0,-1,1) 3d-life(0,0,1) 3d-life(0,1,1)
neighbors : 3d-life(1,-1,1) 3d-life(1,0,1) 3d-life(1,1,1)
initialvalue : 0
initialCellsValue : 3d-life.val
localtransition : 3d-life-rule

[3d-life-rule]
rule : 1 100 { (0,0,0) = 1 and (truecount = 8 or truecount = 10) }
rule : 1 100 { (0,0,0) = 0 and truecount >= 10 }
rule : 0 100 { t }

Figure 70: Implementation of the Game of Life – 3D

CD++ User’s Guide

76 / 78

(0,0,0) = 1
(0,0,2) = 1
(1,0,0) = 1
(1,0,1) = 1
(1,1,1) = 1
(1,2,0) = 1
(1,2,2) = 1
(1,3,2) = 1
(1,4,2) = 1
(1,5,0) = 1
(1,5,1) = 1
(1,6,0) = 1
(1,6,1) = 1
(2,1,2) = 1
(2,1,0) = 1
(2,3,1) = 1
(2,3,2) = 1

(2,4,1) = 1
(2,4,2) = 1
(2,5,0) = 1
(2,6,1) = 1
(3,2,1) = 1
(3,5,1) = 1
(3,5,2) = 1
(3,6,1) = 1
(3,6,2) = 1
(4,1,2) = 1
(4,2,0) = 1
(4,2,1) = 1
(4,4,1) = 1
(4,5,0) = 1
(4,5,2) = 1
(4,6,0) = 1
(4,6,2) = 1

(5,1,2) = 1
(5,2,0) = 1
(5,2,2) = 1
(5,3,0) = 1
(5,3,1) = 1
(5,5,1) = 1
(5,5,2) = 1
(5,6,0) = 1
(6,0,0) = 1
(6,1,1) = 1
(6,1,2) = 1
(6,3,0) = 1
(6,3,2) = 1
(6,4,2) = 1
(6,5,1) = 1
(6,6,0) = 1
(6,6,2) = 1

Figure 71: Initial values for the cells of the Game of Life – 3D

9.5 Use of Macros

The following example shows how macros can be used to write a new version of the Game of the
Life for a 4 dimensional space. Macros can be defined in external files that are included in the main
.ma file. More than one macro definition is may be included per file, but no macro can make use of
an existing macro. A macro is defined between the #BeginMacro and a #EndMacro directives. All
other text is ignored. The next figures show the contents of the four files that are used to
completely define the new model.

#include(life.inc)
#include(life-1.inc)

[top]
components : life

[life]
type : cell
dim : (2,10,3,4)
delay : transport
defaultDelayTime : 100
border : wrapped
neighbors : life(-1,-1,0,0) life(-1,0,0,0) life(-1,1,0,0)
neighbors : life(0,-8,0,0) life(0,-1,0,0) life(0,0,0,0) life(0,1,0,0)
neighbors : life(1,-1,0,0) life(1,0,0,0) life(1,1,0,0)
initialvalue : 0
initialCellsValue : life.val
localtransition : life-rule

[life-rule]
% Comment: Here starts the definition of rules
rule : 1 100 { #macro(Heat) or #macro(Rain) }
rule : 0 100 { (0,0,0,0) = ? OR (0,0,0,0) = 2 }
#macro(rule1) % Another comment: A macro is invoked
rule : 1 100 { (0,0,0,0) = (1,0,0,0) AND (0,0,0,0) > 1 }
#macro(rule2)

Figure 72: Implementation of the Game of Life with 4 dimensions and using macros

CD++ User’s Guide

77 / 78

(0,0,0,0) = ?
(1,0,0,0) = 25
(0,0,1,0) = 21
(0,1,2,2) = 28
(1, 4, 1,2) = 17
(1, 3, 2,1) = 15.44

Figure 73: File life.val that contains the initial values for the Game of Life in 4D

This is a comment: The macro Rule3 assigns the value 0 if the cell’s value
is 3, and 4 if the cell’s value is negative.

#BeginMacro(rule3)
rule : 0 100 { (0,0,0,0) = 3 }
rule : 4 100 { (0,0,0,0) < 0 }
#EndMacro

#BeginMacro(rule1)
rule : 0 100 { (0,0,0,0) + (1,0,0,0) + (1,1,0,0) + (0,–8,0,0) = 11 }
#EndMacro

#BeginMacro(Heat)
(0,0,0,0) > 30
#EndMacro

Figure 74: File life.inc that contains some macros used in the Game of Life 4D

#BeginMacro(Rule2)
rule : 0 100 { (0,0,0,0) = 7 }
rule : { (0,0,0,0) + 2 } 100 { t }
#EndMacro

#BeginMacro(Rain)
(0,–8,0,0) > 25
#EndMacro

Figure 75: File life–1.inc that contains the remaining macros for the Game of Life 4D

CD++ User’s Guide

78 / 78

10 Appendix C – The preprocessor and temporary files.

When the preprocessor is used to resolve macros (by default the preprocessor is enabled), it will
create a temporary file for the model with all macros expanded and all the comments erased. This
temporary file is then passed to the simulator for its interpretation. If the use of the preprocessor
with the parameter -b is disabled and macros are used, the model will not be processed correctly.

The name of the temporary file is the value returned by the instruction tmpnam of the GCC. The
directory where the temporary files are located will be selected according to the following criteria:

1. When CD++ is compiled, the name of directory defined by P_tmpdir <stdio.h> will be used,
unless this is the root directory.

In Linux this variable usually has the value: “/TMP”, while in the version of the GCC 2.8.1
for Windows–32 bits, this variable references to the root directory of the disk unit that is in
use.

2. If P_tmpdir points to the root directory, then the name defined by the environment variable
TEMP will be used.

3. If no TEMP variable is defined, then the value of the environment variable TMP will be
used.

4. Finally, if the TMP is neither defined, the current directory will be used.

